
A Collaborative Dependence Analysis Framework

Nick P. Johnson ∗ Jordan Fix
Stephen R. Beard

Taewook Oh †

Princeton University, USA
{npjohnso,jfix,sbeard,twoh}@cs.princeton.edu

Thomas B. Jablin
UIUC / Multicoreware, USA

jablin@illinois.edu

David I. August
Princeton University, USA

august@princeton.edu

Abstract
Compiler optimizations discover facts about program be-

havior by querying static analysis. However, developing or
extending precise analysis is difficult. Some prior works
implement analysis with a single algorithm, but the algo-
rithm becomes more complex as it is extended for greater
precision. Other works achieve modularity by implement-
ing several simple algorithms and trivially composing them
to report the best result from among them. Such a modu-
lar approach has limited precision because it employs only
one algorithm in response to one query, without synergy
between algorithms. This paper presents a framework for
dependence analysis algorithms to collaborate and achieve
precision greater than the trivial combination of those al-
gorithms. With this framework, developers can achieve the
high precision of complex analysis algorithms through col-
laboration of simple and orthogonal algorithms, without sac-
rificing the ease of implementation of the modular approach.
Results demonstrate that collaboration of simple analyses
enables advanced compiler optimizations.

Keywords Collaborative analysis; Demand-driven analy-
sis; Dependence analysis; Program Dependence Graph.

1. Introduction
Program dependence analysis is critical to a broad range

of static analysis and program transformation techniques.
These include compiler optimizations (such as instructions
scheduling, loop invariant code motion, polyhedral tech-
niques, vectorization, and parallelization), bug finding tools,
program slicing, and many other techniques. Consequently,
decades of research have uncovered a broad array of analysis
algorithms to increase the accuracy and precision of depen-
dence analysis. Pointer analysis (including points-to analy-
sis and alias analysis) judges whether two pointers within
a program reference the same memory location [1, 3, 5,
18, 21, 32, 33]. Shape analysis (including heap reachabil-
ity analysis) models the connectivity of objects to answer
questions of disjointness or cyclicity of data structures as
a whole [9, 10, 30]. Loop dependence analysis determines
whether memory accesses from different iterations of a loop

∗Work performed at Princeton University. Now at D.E. Shaw Research.
†Work performed at Princeton University. Now at Facebook.

are ordered [2, 28]. Research continues since these problems
are difficult and not solved; the general case is undecidable
and various decidable abstractions are intractable [13, 26].
Each proposal is an approximation and occupies a distinct
niche in the trade-off between precision and scalability [12],
but no algorithm dominates all others.

One means to achieve a desired precision-scalability
compromise is to extend algorithms with additional rules or
more precise models [3, 5, 18, 21, 33]. However, this com-
plicates algorithms, as each new rule must be considered in
relation to existing rules.

Alternatively, one may combine several algorithms, thus
blending their performance and accuracy [4, 7, 11, 16, 17,
20, 23, 27]. Some of these prior works hide different mod-
els as implementation details behind a common interface
to enable composability among algorithms [17, 24]. These
approaches design their member algorithms to act indepen-
dently and in isolation. The composition reports the most
precise result from any of its members; the composition is
the sum of its parts.

Other works combining multiple algorithms additionally
provide a property we call collaboration – when these multi-
ple algorithms work synergistically together. Two algorithms
collaborate if the combination disproves dependences which
neither algorithm disproves in isolation. For instance, linear
integer arithmetic (LIA) may disprove aliasing among affine
array accesses, but cannot show that two pointers must ref-
erence the same array. Shape analysis complements LIA by
reasoning about pointers [9, 10, 30]. Through collaboration,
the pair uses both logics to service a single query.

Past works including this notion of collaboration ei-
ther focus on abstract or specialized domains such as SMT
solvers which do not readily lend themselves to dependence
analysis [7, 16, 27], or combine some specific analyses to-
gether to demonstrate their synergy and achieve better pre-
cision or efficiency [3, 4, 20].

Instead, this proposal presents a framework and language
through which analysis algorithms found in real world com-
pilers optimizing complex general purpose programs can
collaborate in the domain of dependence analysis. Develop-
ers using this framework can achieve the high precision of
complex analysis algorithms through collaboration of sim-
ple and orthogonal algorithms, without sacrificing the ease
of implementation of the modular approach.

978-1-5090-4931-8/17$15.00 c© 2017 IEEE CGO 2017, Austin, USA148

In this framework, algorithms are connected in a chain
through which a query is passed until an algorithm can
definitively answer the query. The framework’s interface
provides a common language of queries to unite different
algorithms. To resolve a query, an algorithm may need to
prove a premise that is beyond its own logic. The algorithm
formulates such premises as new queries, optimistically as-
suming that these queries are analyzable by another logic in
the chain. The framework connects the premises to the be-
ginning of the chain, forming an ensemble of analyses, to
allow any algorithm to service any premise via implicit re-
cursion. Such algorithms that break an analysis query into
subproblems are referred to as functor algorithms.

Because ensembles support collaboration, developers
may modularize the development of analysis algorithms
through factorization. Instead of increasingly complicated
algorithms that incorporate additional types of reasoning,
factorization achieves precision through many simple al-
gorithms. Each algorithm disproves queries within its core
competence and assumes other algorithms provide the nec-
essary diversity of logic to solve its premises. Factored
algorithms are developed independently without requiring
knowledge of others, letting developers easily extend anal-
ysis precision to the needs of a client. To date, we have
had multiple authors contributing to our infrastructure write
twenty-three separate algorithms, covering a wide range of
different types of analyses such as pointer analyses, shape
analyses, and reachability analyses. These algorithms were
implemented independently to the needs of each author, yet
have proven valuable to all users of the infrastructure.

The framework achieves great precision through collab-
oration while maintaining the composability of prior ap-
proaches. This paper presents the framework, including:
• a demand-driven interface for contextualized dependence

queries, which serves as a common vocabulary to unify
disparate analysis algorithms;
• premise queries to enable collaboration among many

simple, modular analysis algorithms; and,
• the functor design pattern, enabling factored analysis al-

gorithms which compose into ensembles.
This paper describes 13 analysis algorithms implemented

in the framework (Section 4) and evaluates their precision
and collaboration on the SPEC benchmarks (Section 5).

2. Background
Algorithms for dependence analysis answer non-trivial

properties of a program. Such properties are undecidable,
and thus each algorithm makes a best effort, reporting defi-
nitely yes, definitely no, or unknown when the answer is be-
yond the logic of the algorithm. These unknown cases are
the vehicle for composition; given a diversity of analysis log-
ics, some algorithms answer definitively when others cannot.
In such cases, a composition of algorithms reports the defi-
nite answer. The composition is sound if its members are all
sound [17].

Composability relies on a strict interface for each analy-
sis algorithm. The interface provides a common language of
queries to unite different algorithms. The language abstracts

the disparate models employed in each algorithm yet is gen-
eral enough that it does not hinder its member algorithms.

Collaboration describes algorithms which are more pre-
cise in concert than alone. Collaboration is stronger than
composability since it supports factored algorithms. Factor-
ization achieves precise results through independently devel-
oped, modular algorithms, thus simplifying development.
2.1 Dependence Analysis

The memory dependence relation is a primary motivation.
Dependence has three conditions. We say there is a memory
dependence from instruction i1 to instruction i2 iff (alias)
the footprint of operation i1 may-alias the footprint of i2, and
(feasible-path) there is a feasible path of execution from i1 to
i2 which (no-kill) does not contain an operation which over-
writes the common memory footprint. Footprint denotes the
set of memory locations read or written by the instruction.

3. Design
We describe the design in a top-down fashion, first

presenting the composition of analysis algorithms in Sec-
tion 3.2, then the language of queries in Section 3.3. For
clarity, we present each aspect of the design in the context of
a sample algorithm which we call Array of Structures (AoS).
3.1 An Example Analysis Algorithm

Analysis algorithms for the dependence relation attempt
to disprove one or more of the conditions of dependence
(Section 2.1). For example, AoS disproves dependences be-
tween memory operations by disproving a certain class of
aliasing between pointers to nested aggregate types. Con-
sider a query to test a dependence between two operations.
Suppose that the first operation accesses a pointer of the
form A=&a[i1]...[in] and that the second operation ac-
cesses a pointer with similar construction B=&b[j1]...[jn].
If a = b and have the same declared type and if there exists
a position k such that indices ik , jk, then the pointers can-
not alias and AoS reports no dependence. If the pointers do
not match that form, the algorithm is inapplicable. When ap-
plicable, this simple logic is powerful: it disproves aliasing,
even if indices iq, jq at other positions q , k are non-affine or
otherwise incomparable. This algorithm ignores most cases;
it is designed to serve as part of a diverse ensemble.
3.2 Ensembles Collaborate by Topping Premises

This section describes the combination of analysis algo-
rithms into an ensemble, and how topping enables collabo-
ration within an ensemble. We defer discussion of the query
language until Section 3.3; For now, the reader need only un-
derstand that a query tests the relationship between its spec-
ified operations or pointers.

Viewed in isolation, an analysis algorithm receives in-
coming queries and returns a definitive result if the query
is recognized by the algorithm’s reasoning. The framework
places no constraints on the internal operation of an algo-
rithm, yet an expected work flow guides the design.

Our framework recognizes that every algorithm has limi-
tations, yet analyzing one query may require reasoning that
transcends one algorithm. In our example (Section 3.1), AoS

149

Figure 1: Flowchart depicting the internal operation of the AoS
analysis algorithm (Section 3.1).

logic proves disjointness of array accesses, but does not con-
tain any means to compare base pointers. Since the proposi-
tion a = b is outside of its logic, AoS isolates it as a premise.

An algorithm extracts premises from incoming queries
to isolate propositions which its own logic cannot solve.
The algorithm formulates premises as new queries and tops
them by sending them back to the top of the ensemble as
a new query, signifying that solving premise queries will
contribute to solving the original query. If the algorithm
cannot determine a definitive answer or deems the query not
applicable, then it chains the query by sending it to the next
algorithm in the ensemble. These two possibilities of either
topping or chaining are seen in Figure 1.

Suppose the example algorithm AoS (Section 3.1) re-
ceives a query and demonstrates that ik , jk. The second
condition a = b remains. One could introduce ad-hoc rules
for comparing base pointers, but these are limited; instead,
this section discusses how the ensemble allows AoS to prove
a = b by issuing a premise query to the ensemble.

3.2.1 Combining Analyses into an Ensemble
To form an ensemble, each algorithm is composed such that
one algorithm’s chained queries feed the next. The chain
ends with a null algorithm which always reports the most
conservative answer.

Queries enter the ensemble’s top-most member. These
queries may originate from either a client or from another
analysis algorithm “topping” a premise it generates (see
Figure 2). Because both client and premise queries use the
same query language (described in Section 3.3), all analysis
algorithms understand both query types; the query type is
irrelevant to the analysis algorithms.

Without topping, composition by chaining resembles
composition in LLVM [17]. Topping can significantly im-
prove an ensemble’s performance, as evaluated in Sec-
tion 5.5. We compare to LLVM in Section 6.

Algorithms at higher positions in the ensemble may re-
turn a definitive answer before subsequent members receive
the query. Algorithms which quickly recognize many queries
should be placed above slower ones or those with lesser ap-
plicability, thereby filtering the easy queries. The developer

Figure 2: (above) An ensemble of N algorithms. Premise queries
re-enter at the top; chained queries pass to the next algorithm. (be-
low) Path of a query Q over time. t = 1: Algorithm 2 deconstructs
Q into a premise query Q′. t = 2: Algorithm N solves Q′ and re-
turns R′. t = 3: Algorithm 2 receives R′ and combines it with other
information to yield the result R for Q.

assigns each algorithm a scheduling priority to control its
relative position, lifting efficient algorithms above slow ones
to reduce common-case query latency (Section 5.6).

Continuing with the example algorithm from Section 3.1,
suppose that AoS is Analysis Algorithm 2 in Figure 2. To
determine if a = b, AoS issues a premise query Q′, which
is topped to the beginning of the ensemble of analysis al-
gorithms. Analysis Algorithm 1 will then examine Q′ and
determine if it is within its competency to resolve. If so it
will produce a result R′, else it will chain the query to the
next analysis algorithm. As an example, assume that a and b
are constant pointers and are initialized to point to the same
global object. An analysis algorithm such as Unique Access
Paths (UAP), described in Section 4.2.2, could determine
that a = b. If UAP was Analysis Algorithm 1, it would return
this result R′ to AoS. With an answer to all of its premises,
one of which was resolved via collaboration with UAP, AoS
could respond to the original query it received.

3.2.2 Ensuring Termination
Topping a premise query introduces a cycle into the ensem-
ble. Developers must ensure that cycles do not cause infinite
recursion. Such assurances resemble familiar termination ar-
guments: define a query complexity metric with a lower
bound and demonstrate that premises have a lower metric
than the original queries. Choice of metric depends on the
particular analysis algorithm, but we demonstrate a few.

We prove termination in the AoS example with this met-
ric: indexing operations (LLVM’s getelementptr instruc-
tion) have a metric one greater than their base operand; all
other operations have a metric of zero. AoS strips one layer

150

Figure 3: (top) Loads (ld) and stores (st) access memory via
pointers. Pointers alias if they reference a common location. A foot-
print lists resources which an operation accesses. (bottom) Intra-
iteration path from st p to ld q; Some loop-carried paths from st
p to ld q; Operation st r kills loop-carried flows from st p to
ld q; but, operation st p does not kill all loop-carried flows from
st r to ld q; (F)low, (A)nti, and (O)utput dependences, (L)oop-
carried.

of array indexing, thereby reducing the metric of the premise
query. The metric’s lower bound precludes infinite topping.

When several algorithms generate premise queries, the
termination argument must consider all, either by using a
single metric universally, or by demonstrating that no al-
gorithm’s premises increase another algorithm’s termination
metric. This kind of reasoning is easy in practice.
3.3 The Query Language

The query language enables the expression of depen-
dence analysis queries between clients and analysis algo-
rithms, and between the analysis algorithms themselves.

3.3.1 Specifying Shared Resources
Our proposed interface favors an implicit representation of
resources, rather than explicit points-to sets, because it sup-
ports a wider variety of analysis algorithms. Our query se-
mantics are defined around the footprint of a target opera-
tion. This footprint represents all resources (memory loca-
tions, or a special IO object to model side-effects) accessed
by the target operation (see Figure 3). Algorithms may inter-
pret footprints without enumerating their members and with
varying degrees of precision. This loosens restrictions on
an algorithm’s internal operation and enables composability
across disparate internal models.

In our example (Section 3.1), the target resource is the
memory footprint of the target operation, i.e., the storage
referenced by pointer B. The first operation’s footprint may
share those resources.

3.3.2 Loops and Temporal Relations Qualify Queries
Our proposal specifies context and paths via the loop and
temporal relation parameters. The optional loop parameter
scopes the query such that the static operations refer only to
those dynamic instances which execute within an iteration
of the loop. The temporal relation allows the client to query
loop-carried and intra-iteration dependences separately.

The loop additionally demarcates control flow bound-
aries at loop iterations, and the temporal relation T selects
paths with respect to those boundaries (see Figure 3). If
T = Before, the first operation executes in a strictly-earlier
iteration than the second; if T = After, the first operation
executes in a strictly-later iteration than the second; and, if
T = Same, both operations execute in the same iteration. If
the loop is null, the query represents any dynamic instances
of the operations along any feasible path.

The example algorithm (Section 3.1) attempts to prove
that ik , jk. If both are defined as the same induction
variable, the indices are equal when T = Same yet are
unequal when T = Before or T = After (see Figure 1).

3.3.3 Types of Queries
The interface allows queries for three different relations:
modref ii, modref ip, and alias pp, summarized in Ta-
ble 1. modref * queries determine whether a operation i1
modifies (Mod) or reads (Ref) some set of resources, return-
ing None, Mod, Ref, or Mod-Ref. A target parameter im-
plicitly specifies a set of target resources. For modref ii,
the target is the resource footprint of a target operation i2,
whereas for modref ip, the target is the set of memory lo-
cations referenced by target pointer p2 and access size s2.

The mod-ref relation is similar to the may-depend re-
lation. One determines if there is a memory dependence
from operation i1 to i2 within a single iteration of loop
L, by issuing two queries: modref ii(i1, Same, i2, L) and
modref ii(i2, Same, i1, L). Similarly, one determines if there
is a memory dependence from operation i1 to i2 across itera-
tions of loop L, by issuing the queries: modref ii(i1, Before,
i2, L) and modref ii(i2, After, i1, L). The results of both
queries determine if there is a flow dependence, output de-
pendence. have more than one type of dependence because it
both reads and writes memory, for instance, a call site. Most
clients ignore read-after-read dependences.

4. Implementation
This section describes how we developed our analysis

algorithms and briefly describes the operation of 13 of them.
4.1 Developing New Analysis Algorithms

While developing compiler transformations, we often ob-
serve the compiler acting conservatively due to analysis im-
precision. Such imprecision indicates a deficiency of the en-
semble and an untapped niche in the design space for a new
algorithm. We describe a process to develop new algorithms
which are precise in these cases. Developing algorithms in
the proposed framework is no more complicated than devel-
oping a monolithic algorithm because composability allows
the developer to remain largely ignorant of other algorithms
in the ensemble. Collaboration frequently simplifies the pro-
cess by addressing smaller algorithms in isolation.

The developer lists dependence queries with imprecise
results, either manually or with a tool that compares static
analysis to profiling. The developer confirms that each query
is imprecise by arguing why a dependence cannot manifest.
The developer generalizes this argument into an algorithm to

151

Semantics Query Context and Path Qualifiers

May instruction i1 write to (Mod) or read
from (Ref) the resource footprint of target
operation i2? Return None, Mod, Ref, or
Mod-Ref.

modref ii(i1, Before, i2, L) i1 executes in iteration τ1 of loop L and i2 executes in some
later iteration τ2 > τ1.

modref ii(i1, Same, i2, L) i1 and i2 both execute in the same iteration of L.

modref ii(i1, After, i2, L) i1 executes in iteration τ1 of loop L and i2 executes in some
earlier iteration τ2 < τ1.

May instruction i1 write to (Mod) or read
from (Ref) the resource footprint of target
pointer p2 of length s2? Return None, Mod,
Ref, or Mod-Ref.

modref ip(i1, Before, p2, s2, L) i1 executes in iteration τ1 of loop L and values of p2 are
computed in later iterations τ2 > τ1.

modref ip(i1, Same, p2, s2, L) i1 executes in the same iteration as p2.

modref ip(i1, After, p2, s2, L) i1 executes in iteration τ1 of loop L and p2 computes
pointers in earlier iterations τ2 < τ1.

May any memory location which is refer-
enced by a dynamic pointer value com-
puted by operation p1 of length s1 alias
with the resources referenced by target
pointer p2 of length s2? Return No
Alias, May Alias, or Must Alias.

alias pp(p1, s1, Before, p2, s2, L) p1 is computed in iteration τ1 of loop L and p2 is com-
puted in some later iteration τ2 > τ1.

alias pp(p1, s1, Same, p2, s2, L) p1 and p2 are computed during the same iteration of L.

alias pp(p1, s1, After, p2, s2, L) p1 is computed in iteration τ1 of loop L and p2 is com-
puted in some earlier iteration τ2 < τ1.

Table 1: Types of queries: modref ii compares the footprint of the first instruction to the footprint of the target instruction; modref ip
compares instead to the resources referenced by a target pointer; alias pp compares two pointers.

Sensitivity

Analysis
Algorithm

Memory
-flow

Control
-flow

Array/
field

Calling-
context

Demand-
driven?

Num.
premise
queries
issued

Array of
Structures

× × X × Fully 1

Auto-restrict × × × X Partially 0
Basic Loop × × X × Fully Many

Callsite X X × X Fully Many
Global Malloc X × × × Partially 0

Kill Flow X X × × Fully Many
No-Capture

Global
× × × × Fully 0

No-Capture
Source

× × × × Fully 0

PHI Maze × × × × Fully 0
Semi-Local × × × × Partially Many

Unique Paths X × X X Partially Many
Disjoint Fields × × X × Partially 0
Field Malloc × × X × Partially 1

Table 2: Summary of the analysis algorithms described and evalu-
ated.

recognize such queries and report independence. Algorithms
discovered through this process are largely orthogonal (see
Section 5.7) to the ensemble and target queries which affect
the client and which occur in common programs.

The developer may delegate parts of its analysis logic to
other implementations through premise queries. As a sim-
plifying assumption, our design process encourages devel-
opers to think of topping as an oracle: the ensemble is strong
and will only get stronger. One risk of this approach is that
the ensemble may not be strong enough to disprove the
premises. Another risk is increased query latency. While not
an issue for most algorithms, this can be mitigated by lower-
ing its scheduling priority (Section 3.2.1).
4.2 Analysis Implementations

We have implemented 23 analysis algorithms in this
framework. For space, this paper describes and evaluates
only 13 which we chose for their orthogonality (Section 5.7).

Section 2.1 defines three conditions for dependence: may-
alias, feasible-path, and no-kill. Each algorithm attempts to

disprove a dependence according to one or more of these
conditions. All algorithms operate at the compiler IR level.
Table 2 summarizes the algorithms evaluated in this paper.
We describe each algorithm’s behavior by describing types
of dependences which they disprove; other queries chain to
the next algorithm in the ensemble by default.

4.2.1 Base Analysis Algorithms
Several of our algorithms perform basic reasoning about
various idioms which appear within the IR. These algorithms
do not generate premise queries.

Basic Loop is a straightforward enhancement of LLVM’s
BasicAA to the new interface. It reasons about null point-
ers, pointer casts, Φ-nodes, select instructions, and address
computations, and asserts that stack allocations do not alias
global variables.

Auto-restrict analyzes aliasing between formal parame-
ters by considering all call sites (when known), and replacing
formal parameters with actual parameters. In effect, this adds
C99’s restrict keyword to formals when appropriate.

Global Malloc identifies the subset of global variables
for which all definitions (stores) may be exhaustively enu-
merated. It identifies subsets of globals for which (a) all
definitions are from an allocator and (b) no definitions are
from an allocator. It asserts that values loaded from globals
in classes (a) and (b) must be disjoint.

No-Capture Global identifies the subset of global vari-
ables whose address is never captured. Using a reachability
argument, it asserts that a pointer loaded from memory can-
not alias with a non-captured global.

No-Capture Source identifies global variables or alloca-
tors whose address is never captured. Such objects can only
be referenced through addresses computed from the object’s
name. The algorithm enumerates, transitively, all uses of that
object, and thus may assert the disjointedness of these ob-
jects from other pointers.

Φ-Maze traces the definitions of pointers through Φ-
nodes, pointer casts, and address computations to identify
a set of allocation instructions. If those sets of source ob-

152

jects are complete, it then compares the sets, reasoning that
disparate allocations are disjoint from one another, and from
formal parameters or global variables.

Disjoint Fields identifies aggregate types which are never
type-punned. It identifies within them fields whose address is
never captured. All stores to such fields can be enumerated
and collected as points-to sets. The algorithm asserts that
pointers loaded from such fields are among the points-to
sets, and reports that loaded pointers are disjoint if their
points-to sets are disjoint.

4.2.2 Functor Analysis Algorithms
Functor algorithms initiate collaboration by generating premise
queries and asking other algorithms to solve them.

AoS is the example from Section 3.1. Given indexing
operations &a[i1]...[in] and &b[j1]...[jn], it reports no
dependence if arithmetic and induction variable reasoning
proves ik , jk and if topping establishes a = b.

Kill-Flow searches for killing operations along all feasi-
ble paths between two operations. It searches blocks which
post-dominate the source and dominate the destination. If it
finds call sites among those blocks, it recurs into the callees.
It tops premise queries to compare the footprints of poten-
tial killing operations, reporting no dependence if proved.
Although worst-case running time is high, it runs quickly in
practice due to careful evaluation order and caching.

Call Site Depth Combinator deconstructs queries be-
tween call sites into queries between operations within the
callees. It issues premise queries for all memory operations
within the call site. When recurring into a call site, it records
calling context and tests kills (per Kill-Flow) along each
level of context.

Semi-Local Function uses knowledge of standard C,
POSIX, and C++ STL routines to identify user-defined func-
tions which only read or write memory reachable through
parameters or explicit lists of global variables. The algorithm
generates premise queries to compare call site arguments.

Unique Access Paths searches for global, heap, or stack
objects whose address is never captured. All stores to such
objects can be enumerated, i.e. the memory objects have a
unique access path. It collects points-to sets of values which
are stored to those objects. The algorithm converts queries
on pointers loaded from such paths into premise queries
among the values in the points-to sets.

Field Malloc identifies aggregate types which are never
type-punned and fields of such types whose address is never
captured. It determines whether all stores to the fields are the
unique use of an allocation, i.e., loading the field is the only
way to reach the allocation. It asserts that pointers loaded
from such fields alias only if a premise query demonstrates
that their base objects alias.

5. Evaluation
We evaluate 13 analysis algorithms in the proposed

framework in the LLVM Compiler Infrastructure [17] (re-
vision 164307). We evaluate against 19 C and C++ appli-
cations from the SPEC 2006 suite [31]. We exclude eight
benchmarks for lack of a FORTRAN front-end. Before eval-

uation, we optimize each benchmark with clang -O3, inter-
nalization, and devirtualization of indirect calls. We evaluate
performance on hot loops, those which comprise at least 5%
of execution time and iterate at least 5 times.
5.1 Methodology: Clients and Metrics

We follow Hind’s recommendation [12] by evaluating
with respect to clients of interest: a PS-DSWP client and a
Program Dependence Graph (PDG) client.

The PS-DSWP client queries analysis to drive Parallel-
Stage Decoupled Software Pipelining [29]. PS-DSWP sched-
ules the Strongly Connected Components (SCCs) of the
PDG across threads to produce a pipeline execution model.
We use a fast algorithm to compute SCCs [14]. Several met-
rics of PS-DSWP are:
• %NoDep: percent of dependence queries for which the

ensemble reports no flow, anti, or output dependence.
Larger %NoDep is consistent with higher precision.
• NumSCCs: number of SCCs in the loop’s PDG. More

SCCs grant PS-DSWP greater scheduling freedom. Im-
precise dependence analysis conservatively merges SCCs.
• NumDoallSCCs: number of SCCs which lack loop-carried

dependences. More is better as PS-DSWP schedules
DOALL SCCs concurrently.
• %BailOut: percent of loops for which the SCC algorithm

bails out [14]. Bail-out indicates that PS-DSWP cannot
parallelize the code. Smaller is better.
The PDG client [8] performs an intra-iteration and a

loop-carried dependence query on each pair of memory op-
erations within each hot loop. The PDG client’s %NoDepmet-
ric is the fraction of queries which the ensemble disproves or
reports only a read-after-read dependence. Larger %NoDep is
better. This metric values every dependence equally.

Both clients are limited to a 30 minute timeout. In the
case of a timeout, results indicate progress before a timeout.
5.2 Methodology: Dependence Profiling as an Oracle

We model an oracle from profiling information. We use
a loop-sensitive memory flow dependence profiler [25] to
identify dependences in applications with its spec train in-
put set. If the profiler observes no memory flow dependence
between a pair of operations, the oracle asserts that there is
no flow dependence. An analysis-adapter introduces these
assertions into the ensemble.

This is not a true oracle. Profiles are incomplete because
the training input does not induce 100% code coverage. The
memory profiler detects only flow dependences and cannot
assert the absence of anti or output dependences. In these
cases, the oracle degrades to static analysis.

In some cases, the oracle is too precise because pro-
filing information reflects input-driven program behaviors,
whereas static analysis algorithms compute a conservative
estimate of program behavior over all possible inputs. We do
not expect static analysis to achieve oracle results. Despite
limitations, this oracle provides a reference for comparison.
5.3 Importance of Context

To evaluate the impact of context and path qualifiers on
precision, we create variants of the PDG and PS-DSWP

153

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
o

lla
b

o
ra

ti
v
e

 (
E

x
h

a
u

s
ti
v
e

 %
N

o
D

e
p

)

Best-of-N (Exhaustive %NoDep)

27.8

40.4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
o

lla
b

o
ra

ti
v
e

 (
E

x
h

a
u

s
ti
v
e

 %
N

o
D

e
p

)

No-topping (Exhaustive %NoDep)

26.8

39.6

Figure 4: Relative strengths of composition methods. Each point
is a hot loop, excluding time-outs. Cross-hairs show the geometric
mean of each dimension, excluding loops with either x=0% or
y=0%. Collaboration performs better on loops above the diagonal.
(above) Collaboration vs best-of-N. (below) Collaboration vs no-
topping.

clients which issue context-blinded queries. We compare
the performance of the contextualized and context-blinded
variants of the oracle and the full ensemble of static analysis.

Figure 5 compares the precision of the oracle and full en-
semble with and without query context. The top plot presents
the %NoDep metric of the PDG client. When context is re-
moved, oracle performance drops by 25.3% (geomean) and
ensemble performance drops by 6.1% (geomean). The mid-
dle presents results with respect to the %NoDep metric of
the PS-DSWP client which show a similar decrease in preci-
sion. The bottom plot shows the fraction of loops within each
benchmark for which PS-DSWP bails out (finds no DOALL
SCCs). Removing context reduces precision and increases
the bail-out rate by 29.7% for the Oracle and 40.0% for the
ensemble, indicating degraded client performance.
5.4 Precision with Respect to the PS-DSWP Client

Of the 169 hot loops found in 19 SPEC 2006 benchmarks,
20 loops are so constrained by register and control depen-
dences that they have only one SCC. The PS-DSWP client
bails-out before it issues any memory query for such loops.
Of the 149 hot loops for which PS-DSWP issues queries,
the oracle reports worst-case (1 SCC, 0 DOALL SCCs) for
84 hot loops (56.4%). The full ensemble reports the same in
these cases.

 0

 20

 40

 60

 80

 100

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

435.gromacs

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

482.sphinx3

geomean

 0

 20

 40

 60

 80

 100

%
 N

o
 d

e
p

% No dep for Exhaustive

Oracle
Oracle, no Context

Full Ensemble
Full Ensemble, no Context

 0

 20

 40

 60

 80

 100

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

435.gromacs

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

482.sphinx3

geomean

 0

 20

 40

 60

 80

 100

%
 N

o
 d

e
p

% No dep for PS-DSWP Client

Oracle
Oracle, no Context

Full Ensemble
Full Ensemble, no Context

 0

 20

 40

 60

 80

 100

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

435.gromacs

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

482.sphinx3

geomean

 0

 20

 40

 60

 80

 100

%
 B

a
il

o
u
t

% Bail out for PS-DSWP Client

Oracle
Oracle, no Context

Full Ensemble
Full Ensemble, no Context

Figure 5: Query context improves oracle and full ensemble preci-
sion. (top) The PDG Client’s %NoDep metric. (middle) The PS-
DSWP Client’s %NoDep metric. (bottom) The PS-DSWP Client’s
bail-out metric.

Among 65 remaining loops, the oracle found more than
one SCC. On these loops, the full ensemble reported 27.4%
as many SCCs as the oracle (geomean). The full ensemble
achieves zero DOALL SCCs for 39 loops. Excluding these
loops, the full ensemble reports 66.5% of the DOALL SCCs
of the oracle (geomean).

Overall, the PS-DSWP client reports the same number of
SCCs for 97 of 169 hot loops, and reports the same number
of DOALL SCCs for 98 hot loops, regardless of whether the
client employs the oracle or full ensemble.
5.5 Topping, Chaining, or Best-of-N

The proposal encourages development of factored algo-
rithms, arguing that the pattern of chaining and topping
achieves precision. We demonstrate the value of chaining
and topping by evaluating alternative means of composition
while using the same algorithms.

An alternative to chaining and topping is the best-of-N
method which passes each query to each algorithm in isola-
tion and returns the most precise answer. This corresponds to
the implementation in the LLVM static analysis framework

154

 0

 2

 4

 6

 8

 10

 12

 14

 16

<79K

[79K, 149K)

[149K, 219K)

[219K, 289K)

[289K, 359K)

[359K, 430K)

[430K, 500K)

[500K, 570K)

[570K, 640K)

[640K, 710K)

[710K, 780K)

[780K, 850K)

[850K, 920K)

[920K, 991K)

[991K, 1M
)

[1M
, 1M

)

[1M
, 1M

)

[1M
, 1M

)

[1M
, 1M

)

[1M
, 338G

)

Query latency (cycles)

Histogram of query latency ; includes 338 regions

Queries (Percent)

Figure 6: Histogram of query latency.

(see Section 6). Figure 4 compares the best-of-N method to
our proposal. The chaining and topping method performs
better than best-of-N on the %NoDep metric of the PDG
client for all but 10 of 140 loops (timeouts excluded). Preci-
sion bugs in our implementation cause these cases.

To evaluate the importance of premise queries, we mod-
ified our framework so that every topped query is instead
chained, i.e., premise queries are passed only to later mem-
bers of the ensemble instead of all. Figure 4 presents this
comparison and demonstrates that chaining and topping
combined dominate chaining alone.
5.6 Query Latency

Figure 6 presents the time to service queries from the
SPEC 2006 suite. Time is measured in processor cycles on
an eight core 1.6GHz Xeon E5310. Measurements are per-
formed with the full ensemble, as well as a few additional
analyses not described in this paper due to space consid-
erations. Overall, 50% of queries are serviced in 287.6µs
(460K cycles) and 90% of queries are serviced in 1.0ms (2M
cycles). Variations in query latency are due to variations in
query complexity, not noise.
5.7 Collaboration

Evaluation demonstrates that factored algorithms work
together despite strict modularity. For a fixed set of depen-
dence queries, such as the queries necessary to compute the
PDG of a loop, an algorithm’s orthogonality and collabo-
ration can be witnessed as the marginal improvement when
adding or removing that algorithm from the ensemble.

Figure 7 illustrates this methodology with a fixed set of
three queries. The full ensemble contains all 13 algorithms.
We define leave-one-out and isolated ensembles for each
algorithm X: leave-one-out consists of all algorithms except
for X, and isolated consists of X alone. We define gain as the
difference between the full ensemble and the leave-one-out
ensemble of X. Informally, gain represents the contribution
of algorithm X to the ensemble. Algorithms are orthogonal if
at most one algorithm disproves any one dependence query:
adding X increases the ensemble’s precision by the precision
of X in isolation. Algorithms are non-orthogonal if there is a
query which several disprove: adding X improves precision

Gain = 1/3 = Isolated =⇒ Orthogonal
Q1 Q2 Q3 %No

All algorithms No No – 2/3
Algorithm X, isolated – No – 1/3

All algorithms except X No – – 1/3
Gain = 0/3 < Isolated =⇒ Non-orthogonal

Q1 Q2 Q3 %No
All algorithms No – – 1/3

Algorithm X, isolated No – – 1/3
All algorithms except X No – – 1/3

Gain = 2/3 > Isolated =⇒ Collaboration
Q1 Q2 Q3 %No

All algorithms No No No 3/3
Algorithm X, isolated – No – 1/3

All algorithms except X No – – 1/3

Figure 7: Different ensembles disprove different subsets of a fixed
set of queries. By varying the ensemble, we observe orthogonality,
non-orthogonality, and collaboration.

by an amount less than the precision of X in isolation. We
say that algorithms in an ensemble collaborate if there is a
class of dependence queries which the ensemble disproves,
yet which no single algorithm disproves in isolation.

We value orthogonality as it is consistent with the mini-
mal amount of software development effort, but non-orthog-
onality is not detrimental to soundness or precision. We seek
collaboration since it indicates a great return on software-
engineering effort.

Table 3 summarizes collaboration and orthogonality ex-
periments by comparing full ensemble, leave-one-out, and
isolated performance of each algorithm. Columns present
the percentages of loops whose gain is greater than, equal
to, or less than its isolated performance. Each loop is an ag-
gregation of queries, so all categories potentially represent
a mixture of collaboration, anti-collaboration, orthogonal-
ity and non-orthogonality. When gain exceeds isolated, the
algorithm contributes more in an ensemble than it does on
its own. Such loops are positive evidence of collaboration.
Loops whose gain equals isolated performance are consis-
tent with orthogonality. Loops whose gain is zero indicate
non-orthogonality. Loops whose gain is less than isolated
performance are inconclusive.

We present loop-by-loop data for four select algorithms.
The comparisons in Table 3 correspond to the position of
each loop with respect to the diagonals in Figure 8. Com-
binator algorithms Array of Structures and Kill Flow show
a trend along the isolated=0 border, indicating that these
algorithms disprove few queries alone yet help other algo-
rithms to disprove many. Basic Loop demonstrates many
loops with isolated>0. However, it also demonstrates col-
laborative loops where gain>isolated. Although it does not
generate premise queries, Basic Loop collaborates by solv-
ing premise queries generated by other analyses.

There may be a class of dependences which one algo-
rithm disproves in isolation, but which the ensemble can-
not. We call such cases anti-collaborative. Developers try
to avoid anti-collaboration since it indicates a precision bug.
Table 3 and Figure 8 show some analysis implementations
suffer from anti-collaboration, visible as negative gain. Ar-

155

Analysis Algorithm
Gain vs Isolated Performance (% of Loops)

Collab. Ortho? Anti-collab. Non-ortho. Anti-collab? Non-ortho?
gain > iso gain = iso gain < 0 < iso 0 = gain < iso 0 < gain < iso

Kill flow 40.7 44.3 2.1 3.6 9.3
Callsite depth combinator 32.1 57.1 0.0 0.0 10.7

Array of structures 31.4 50.0 13.6 0.7 4.3
Semi local fun 30.9 50.4 1.4 2.9 14.4

Basic loop 30.2 24.5 0.7 8.6 36.0
Field malloc 21.4 72.1 2.9 2.1 1.4

Unique access paths 13.7 86.3 0.0 0.0 0.0
Auto restrict 10.9 84.1 5.1 0.0 0.0

No capture global 6.4 57.9 3.6 15.7 16.4
Global malloc 1.4 89.9 4.3 2.9 1.4

Phi maze 1.4 56.8 2.9 28.8 10.1
No capture src 0.0 63.3 2.9 20.9 12.9
Disjoint fields 0.0 82.9 5.0 5.0 7.1

Table 3: Collaboration and anti-collaboration is observed in the relative strengths of the full, leave-one-out, and isolated ensembles. Each
cell is a percentage of hot loops which satisfy an inequality between gain and isolated ensembles.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Array of structures (140)

31.4%

50.0%

13.6%
0.7%

4.3%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Kill flow (140)

40.7%

44.3%

2.1%
3.6%

9.3%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Basic loop (139)

30.2%

24.5%

0.7%
8.6%

36.0%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Semi local fun (139)

30.9%

50.4%

1.4%
2.9%

14.4%

Figure 8: Collaboration per loop of the PDG %NoDep metric for select algorithms. The horizontal axis is isolated performance, the vertical
axis is gain (full - leave-one-out). Percentages in plot area count loops in each case.

ray of structures, for instance, shows anti-collaboration on
13.6% of loops, but most of those are only slightly negative.
5.8 Importance to Speculative Parallelization

The ASAP System [15] is a speculative automatic thread
extraction system for clusters. ASAP combines static analy-
sis and profile-driven speculation to identify and parallelized
hot loops. Its runtime system provides a transactional mem-
ory abstraction and provides memory coherence between the
otherwise disjoint memories at each cluster node.

ASAP uses speculation to overcome weak static analysis,
but speculation incurs high runtime costs in terms of vali-
dation overheads. When more precise analysis is available,
the compiler generates more efficient code with lower over-
heads, and eliminates validation overheads completely when
non-speculative parallelization is possible.

To analyze the sensitivity of a speculative thread extrac-
tion system to dependence analysis precision, we repeat the
ASAP evaluation while varying the strength of dependence
analysis. Each analysis configuration employ a subset of all
analysis implementations. We select 28 analysis configura-
tions: (a) the full configuration of all analyses; (b) 13 leave-
one-out configurations, each consisting of the full set of
analyses with one removed; (c) 13 singleton configurations,
each consisting of a single analysis in isolation; (d) the null
configuration with no analyses. We expect configuration (a)
to be most precise, followed by configurations in (b), con-

figurations in (c), and finally configuration (d). We ran the
ASAP automatic thread extraction system under each con-
figuration of analysis. Although the compiler could produce
28 distinct variants of each benchmark, each corresponding
to an analysis configuration, in practice the compiler gener-
ated at most two distinct outputs per benchmark.

Seven benchmarks were insensitive analysis precision,
two crashed, and four were sensitive. Figure 9 summarizes
the results of the ASAP analysis-sensitivity experiments for
the benchmarks 2mm, 3mm, covariance and correlation.
With stronger analysis, ASAP achieves a geomean speedup
of 28× on 50 cores, however, when weak analysis is used,
those same benchmarks suffer an 11× slowdown. All slow-
down measurements are bound by a 24 hour timeout.

6. Related Work
The LLVM compiler infrastructure [17] uses ensembles

which combine analysis algorithms with chaining. LLVM
implements classic algorithms [1, 32] and state of the
art algorithms (such as [18]). However, the LLVM inter-
face lacks context and a means to “top” premise queries.
The LLVM query language’s lack of context limits its
precision and leads to separate implementations Memory-
DependenceAnalysis and LoopDependenceAnalysis.
Each is a monolithic implementation, not a collaborative
or even composable interface, limiting future development.

156

 1
 0

 5

 10

 15

 20

 25

 30

 35

 2 5 10 20 50

S
p

e
e

d
u

p
 o

v
e

r
S

e
q

u
e

n
ti
a

l
E

x
e

c
u

ti
o

n

Number of Cores

Speculative Parallelization with Strong Analysis

Sequential Running Time (1x)
2mm
3mm

correlation
covariance

 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 5 10 20 50

S
p

e
e

d
u

p
 o

v
e

r
S

e
q

u
e

n
ti
a

l
E

x
e

c
u

ti
o

n

Number of Cores

Speculative Parallelization with Weak Analysis

2mm
3mm

correlation
covariance

Figure 9: Sensitivity of ASAP speedup to the static analysis. In
four benchmarks, stronger analysis allows parallelization without
speculation or with less speculation, and delivers scalable paral-
lelism. Weaker analysis forces the compiler to employ more spec-
ulation on the same benchmarks, and parallelized applications run
slower than the sequential code.

LLVM design documents [24] hint at premise queries.
However none of the LLVM implementations use premises
(Basic, Lib Calls, Globals ModRef, Scalar Evolution, Type-
Based, Steensgaard’s, nor Data-Structure Analysis). Instead,
these algorithms chain inapplicable queries verbatim. With-
out premises, LLVM follows the best-of-N composition pat-
tern (Section 5.5).

Even if these algorithms were designed to generate
premise queries, LLVM’s analysis framework lacks a top-
ping mechanism. Design documents suggest placing algo-
rithms which issue premise queries at higher positions in the
ensemble so that chained premise queries reach more, sub-
sequent implementations [24]. This suggestion resembles
no-topping composition (Section 5.5). Since our proposal
lets functors top queries regardless of their positions, de-
velopers may adjust scheduling priorities (Section 3.2.1) to
tune query latency without harming precision.

The 2013 Dagstuhl Seminar considers pointer analy-
sis [22]. The report recognizes the importance of quali-
fying analysis queries with context. Our query language’s
loop context and temporal relation (Section 3.3.2) provides
a concrete interface to achieve this. The report also sug-
gests dividing the interface: one interface between client and
analysis systems, and another between the analysis system
and member algorithms. The former translates IR-specific
queries into a canonical form and allows member algorithms
to post intermediate results. A central query system com-
bines these intermediate results as a means of collaboration.
Our proposal instead uses one interface for both roles. Our
proposal includes a query language that allows context to be
expressed by both clients and other analysis algorithms. Due
to the similarities among dependence, alias, and shape anal-

ysis, our query language is expressive enough for algorithms
to exchange rich premise and collaborate despite incompati-
bilities among models that algorithms use internally.

Others examine collaboration between a limited number
of specific analyses [3, 4, 20, 22]. For example, Thresher [3]
combines pointer analysis with shape analysis using a mixed
representation to enable collaboration. However, this collab-
oration is custom-built around these algorithms; it is unclear
how it generalizes to other analysis algorithms.

Several Datalog frameworks implement analysis algo-
rithms with various abstractions [5, 21, 33]. These allow
clients to select a precision-scalability compromise by fixing
an abstraction, but do not combine different abstractions.

Other works achieve precision and scalability by com-
bining fast, imprecise analysis algorithms with slow, pre-
cise algorithms. Client-driven approaches track imprecision
from polluting assignments in a fast algorithm and reissue
queries to a precise algorithm when imprecision detriments
the client [11]. The pruning-refinement method constructs a
family of algorithms with varied abstractions [23]. A query
visits each algorithm until one answers definitively. Interme-
diate results prune extraneous relations in later algorithms
and improve scalability. Pruning does not improve any mem-
ber algorithm’s precision; thus they do not collaborate.

Composing analyses to achieve better dataflow optimiza-
tion results has been explored in the past [6, 19]. Similar
to our framework, these works are driven by the desire for
simple and modular, rather than monolithic, analyses. Other
works [7, 16, 27] contain a notion of collaboration between
many analyses, however they focus on abstract or special-
ized domains such as SMT solvers. None of these techniques
readily lend themselves to memory analysis.

7. Conclusion
The proposed framework enables collaboration among

analysis algorithms in a composable framework. These fea-
tures encourage the development of factored algorithms,
whereby compiler engineers develop simple algorithms tar-
geting orthogonal concerns. The framework’s interface sup-
ports contextualized queries to disambiguate subtly different
queries. Using an ensemble of many simple analysis im-
plementations, the framework achieves precise dependence
analysis to support advanced compiler optimizations. Fur-
thermore, we believe that the core idea of a collaborative
analysis framework could be extended beyond program de-
pendence analysis to other types of program analysis.

8. Acknowledgments
We thank the Liberty Research Group for their support

and feedback during this work. We also thank the anony-
mous reviewers for their insightful comments and sugges-
tions. This work is supported by the National Science Foun-
dation (NSF) through Grants OCI-1047879, CCF-1439085,
and CNS-0964328. All opinions, findings, conclusions, and
recommendations expressed in this paper are those of the
Liberty Research Group and do not necessarily reflect the
views of the NSF. This work was carried out when the au-
thors were working at Princeton University.

157

References
[1] L. O. Andersen. Program analysis and specialization for the

C programming language, May 1994.

[2] U. Banerjee. Loop Parallelization. Kluwer Academic Pub-
lishers, Boston, MA, 1994.

[3] S. Blackshear, B.-Y. E. Chang, and M. Sridharan. Thresher:
precise refutations for heap reachability. In Proceedings of the
34th ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’13, pages 275–286, New
York, NY, USA, 2013. ACM.

[4] M. Bravenboer and Y. Smaragdakis. Exception analysis and
points-to analysis: Better together. In Proceedings of the
Eighteenth International Symposium on Software Testing and
Analysis, ISSTA ’09, pages 1–12, New York, NY, USA, 2009.
ACM.

[5] M. Bravenboer and Y. Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In Proceedings of
the 24th ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, OOPSLA ’09,
pages 243–262, New York, NY, USA, 2009. ACM.

[6] C. Click and K. D. Cooper. Combining analyses, combin-
ing optimizations. ACM Transactions on Programming Lan-
guages and Systems, 17, 1995.

[7] P. Cousot, R. Cousot, and L. Mauborgne. The reduced prod-
uct of abstract domains and the combination of decision pro-
cedures. In Proceedings of the 14th International Conference
on Foundations of Software Science and Computational Struc-
tures: Part of the Joint European Conferences on Theory and
Practice of Software, FOSSACS’11/ETAPS’11, pages 456–
472, Berlin, Heidelberg, 2011. Springer-Verlag.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9:319–349,
July 1987.

[9] R. Ghiya and L. J. Hendren. Is it a Tree, DAG, or Cyclic
Graph? In Proceedings of the ACM Symposium on Principles
of Programming Languages, January 1996.

[10] B. Guo, N. Vachharajani, and D. I. August. Shape analysis
with inductive recursion synthesis. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 256–265, June 2007.

[11] S. Z. Guyer and C. Lin. Client-driven pointer analysis. In
In International Static Analysis Symposium, pages 214–236.
Springer-Verlag, 2003.

[12] M. Hind. Pointer analysis: Haven’t we solved this problem
yet? In 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering (PASTE),
2001.

[13] S. Horwitz. Precise flow-insensitive may-alias analysis is NP-
hard. ACM Transactions on Programming Languages and
Systems, 19(1), January 1997.

[14] N. P. Johnson, T. Oh, A. Zaks, and D. I. August. Fast con-
densation of the program dependence graph. In Proceedings
of the 34th ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’13, pages 39–50,
New York, NY, USA, 2013. ACM.

[15] H. Kim. ASAP: Automatic Speculative Acyclic Parallelization
for Clusters. PhD thesis, Princeton, NJ, USA, 2013.

[16] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis
as database queries. In Proceedings of the Twenty-fourth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’05, pages 1–12, New York, NY,
USA, 2005. ACM.

[17] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings
of the Annual International Symposium on Code Generation
and Optimization (CGO), pages 75–86, 2004.

[18] C. Lattner, A. Lenharth, and V. Adve. Making Context-
Sensitive Points-to Analysis with Heap Cloning Practical For
The Real World. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (PLDI), San Diego, California, June 2007.

[19] S. Lerner, D. Grove, and C. Chambers. Composing dataflow
analyses and transformations. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’02, pages 270–282, New York,
NY, USA, 2002. ACM. ISBN 1-58113-450-9.

[20] O. Lhotak. Program Analysis using Binary Decision Dia-
grams. PhD thesis, School of Computer Science, McGill Uni-
versity, Montreal, Quebec, Canada, January 2006.

[21] O. Lhoták and L. Hendren. Evaluating the benefits of context-
sensitive points-to analysis using a bdd-based implementa-
tion. ACM Trans. Softw. Eng. Methodol., 18(1):3:1–3:53, Oct.
2008.

[22] O. Lhoták, Y. Smaragdakis, and M. Sridharan. Pointer Anal-
ysis (Dagstuhl Seminar 13162). Dagstuhl Reports, 3(4):
91–113, 2013. URL http://drops.dagstuhl.de/opus/
volltexte/2013/4169.

[23] P. Liang and M. Naik. Scaling abstraction refinement via
pruning. In Proceedings of the 2011 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI).

[24] LLVM Project. LLVM Alias Analysis Infrastructure, October
2013. http://llvm.org/docs/AliasAnalysis.html.

[25] T. R. Mason. Lampview: A loop-aware toolset for facilitat-
ing parallelization. Master’s thesis, Department of Electri-
cal Engineering, Princeton University, Princeton, New Jersey,
United States, August 2009.

[26] R. Muth and S. Debray. On the complexity of flow-sensitive
dataflow analyses. In In Proc. ACM Symp. on Principles of
Programming Languages, pages 67–80. ACM Press, 2000.

[27] G. Nelson and D. C. Oppen. Simplification by cooperating
decision procedures. ACM Transactions on Programming
Languages and Systems, 1:245–257, 1979.

[28] W. Pugh. The omega test: a fast and practical integer pro-
gramming algorithm for dependence analysis. In Proceedings
of Supercomputing 1991, pages 4–13, November 1991.

[29] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August.
Parallel-stage decoupled software pipelining. In Proceedings
of the Annual International Symposium on Code Generation
and Optimization (CGO), 2008.

[30] M. Sagiv, T. Reps, and R.Wilhelm. Solving shape-analysis
problems in languages with destructive updating. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 16–31, January
1996.

158

http://drops.dagstuhl.de/opus/volltexte/2013/4169
http://drops.dagstuhl.de/opus/volltexte/2013/4169

[31] spec. Standard Performance Evaluation Corporation.
http://www.spec.org.

[32] B. Steensgaard. Points-to analysis in almost linear time. In
Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages, pages 32–41, January 1996.

[33] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Pro-
ceedings of the ACM SIGPLAN 2004 conference on Program-
ming language design and implementation, (PLDI), pages
131–144, New York, NY, 2004.

159

	Introduction
	Background
	Dependence Analysis

	Design
	An Example Analysis Algorithm
	Ensembles Collaborate by Topping Premises
	Combining Analyses into an Ensemble
	Ensuring Termination

	The Query Language
	Specifying Shared Resources
	Loops and Temporal Relations Qualify Queries
	Types of Queries

	Implementation
	Developing New Analysis Algorithms
	Analysis Implementations
	Base Analysis Algorithms
	Functor Analysis Algorithms

	Evaluation
	Methodology: Clients and Metrics
	Methodology: Dependence Profiling as an Oracle
	Importance of Context
	Precision with Respect to the PS-DSWP Client
	Topping, Chaining, or Best-of-N
	Query Latency
	Collaboration
	Importance to Speculative Parallelization

	Related Work
	Conclusion
	Acknowledgments

