
Automatically Exploiting Cross-Invocation
Parallelism Using Runtime Information

Jialu Huang Thomas B. Jablin Stephen R. Beard Nick P. Johnson David I. August
Princeton University, Princeton, NJ

{jialuh, tjablin, sbeard, npjohnso, august}@princeton.edu

Abstract
Automatic parallelization is a promising approach to pro-
ducing scalable multi-threaded programs for multicore ar-
chitectures. Many existing automatic techniques only par-
allelize iterations within a loop invocation and synchronize
threads at the end of each loop invocation. When paral-
lel code contains many loop invocations, synchronization
can easily become a performance bottleneck. Some auto-
matic techniques address this problem by exploiting cross-
invocation parallelism. These techniques use static anal-
ysis to partition iterations among threads to avoid cross-
thread dependences. However, this partitioning is not al-
ways achievable at compile-time, because program input de-
termines dependence patterns at run-time. By contrast, this
paper proposes DOMORE, the first automatic paralleliza-
tion technique that uses runtime information to exploit ad-
ditional cross-invocation parallelism. Instead of partitioning
iterations statically, DOMORE dynamically detects cross-
thread dependences and synchronizes only when necessary.
DOMORE consists of a compiler and a runtime library. At
compile time, DOMORE automatically parallelizes loops
and inserts a custom runtime engine into programs. At run-
time, the engine observes dependences and synchronizes it-
erations only when necessary. For six programs, DOMORE
achieves a geomean loop speedup of 2.1× over parallel ex-
ecution without cross-invocation parallelization and of 3.2×
over sequential execution on eight cores.

Categories and Subject Descriptors D.1.3 [Software]:
Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Code Generation,
Compilers, Optimization

General Terms Performance, Design, Experimentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO’13 23-27 February 2013, Shenzhen China.
978-1-4673-5525-4/13/$31.00 c©2013 IEEE. . . $15.00

1. Introduction
Harnessing the performance potential of multicore proces-
sors requires scalable parallel programs. Automatic paral-
lelization techniques are a promising approach for produc-
ing well-performing parallel programs. Most existing par-
allelization techniques exploit loop level parallelism [1, 6,
19, 27, 28, 30–32]. They parallelize loops and globally syn-
chronize at the end of each loop invocation. Consequently,
programs with many loop invocations will synchronize fre-
quently.

These parallelization techniques fail to deliver scalable
performance because synchronization forces all threads to
wait for the last thread to finish an invocation [21]. At high
thread counts, threads spend more time idling at synchro-
nization points than doing useful computation. There is an
opportunity to improve the performance by exploiting addi-
tional parallelism. Often, iterations from different loop invo-
cations can execute concurrently without violating program
semantics. Instead of waiting, threads begin iterations from
subsequent invocations.

A few automatic parallelization techniques exploit cross-
invocation parallelism [9, 25, 35, 37]. Cross-invocation
parallelization requires techniques for respecting cross-
invocation dependences without resorting to coarse-grained
barrier synchronization. Some techniques [9, 37] respect de-
pendences by combining several small loops into a single
larger loop. This approach side-steps the problem of ex-
ploiting cross-invocation parallelism by converting it into
cross-iteration parallelism. Other approaches [25, 35] care-
fully partition the iteration space in each loop invocation so
that cross-invocation dependences are never split between
threads. However, both techniques rely on static analyses.
Consequently, they cannot adapt to the dependence patterns
manifested by particular inputs at runtime. Many statically
detected dependences may only manifest under certain input
conditions. For many programs, these dependences rarely
manifest given the most common program inputs. By adapt-
ing to the dependence patterns of specific inputs at runtime,
programs can exploit additional cross-invocation parallelism
and achieve greater scalability.

This work presents DOMORE, the first automatic par-
allelization technique to capture dynamic cross-invocation
parallelism. Unlike existing techniques, DOMORE gathers
cross-invocation dependence information at runtime. Even
for programs with irregular dependence patterns, DOMORE
precisely synchronizes iterations which depend on each
other and allows iterations without dependences to execute
concurrently. As a result, DOMORE is able to enable more
cross-invocation parallelization and achieves more scalable
performance.

DOMORE first identifies the code region containing the
targeted loop invocations, and then transforms the program
by dividing the region into a scheduler thread and several
worker threads. At runtime, the scheduler thread detects
which iterations access common memory locations, and for-
wards synchronization conditions to the worker thread us-
ing lock-free queues. Each worker thread executes an itera-
tion when its synchronization condition is satisfied. Conse-
quently, only threads waiting on the synchronization condi-
tions must stall, and iterations from consecutive loop invo-
cations may execute in parallel.

The automatic compiler implementation in LLVM [16]
provides significant performance gains over both sequen-
tial code and parallel code with barriers. Evaluation on six
benchmark programs shows a loop speedup of 2.1× over
codes without cross-invocation parallelization and 3.2× over
the original sequential performance on eight cores.

2. Motivation and Overview
To motivate the DOMORE technique, we present an exam-
ple using the program CG from the NAS suite [24]. Fig-
ure 1(a) shows a simplified version of CG’s performance
dominating loop nest. The outer loop computes the loop
bounds of the inner loop, and the inner loop calls the
update function, updating values in array C. For the outer
loop, aside from induction variables, the only cross-iteration
dependence is between calls to the update function. Profil-
ing reveals that this dependence manifests across 72.4% of
outer loop iterations. The inner loop has no cross-iteration
dependence since no two iterations in the same invocation
update the same element in array C.

The update dependence prevents DOALL paralleliza-
tion [1] of the outer loop. Spec-DOALL [31] can parallelize
the outer loop by speculating that the update dependence
does not occur. However, speculating the outer loop depen-
dence is not profitable, since the update dependence fre-
quently manifests across outer loop iterations. As a result,
DOALL will parallelize the inner loop and insert barrier syn-
chronizations between inner loop invocations to ensure the
dependence is respected between invocations.

Figure 2(a) shows the execution plan for a DOALL par-
allelization of CG. Iterations in the same inner loop invo-
cation execute in parallel. After each inner loop invocation,
threads synchronize at the barrier. Typically, threads do not

reach barriers at the same time for a variety of reasons. For
instance, each thread may be assigned a different number of
tasks and the execution time of each task may vary. Threads
that finish the inner loop early may not execute past the bar-
rier, resulting in very poor scalability.

Figure 2(b) shows the execution plan after DOMORE’s
partitioning phase (Section 4.1). The first thread executes
code in the outer loop (statements A to D) and serves as the
scheduler. The other threads execute update code in the in-
ner loop concurrently and serve as workers. Overlapping the
execution of scheduler and worker threads improves the per-
formance, however, without enabling cross-invocation par-
allelism, clock cycles are still wasted at the synchronization
points.

Figure 2(c) shows the execution plan after the DOMORE
transformation completes and enables cross-invocation par-
allelization. The scheduler sends synchronization informa-
tion to the worker threads and worker threads only stall when
a dynamic dependence is detected. In the example, most of
CG’s iterations are independent and may run concurrently
without synchronization. However, iteration 1.5 (i.e. when
i=1, j=5) updates memory locations which are later accessed
by iteration 2.2. At runtime, the scheduler discovers this de-
pendence and signals thread one to wait for iteration 1.5.
After synchronization, thread one proceeds to iteration 2.2.
As shown in Figure 7(a), DOMORE enables scalable loop
speedup for CG up to eight threads on an eight-core ma-
chine.

Figure 3 shows a high-level overview of the DOMORE
transformation and runtime synchronization scheme. DO-
MORE accepts a sequential program as input and targets hot
loop nests within the program. At compile-time, DOMORE
first partitions the outer loop into a scheduler thread and
several worker threads (Section 4.1). The scheduler thread
contains the sequential outer loop while worker threads
contain the parallel inner loop. Based on the paralleliza-
tion technique used to parallelize the inner loop, the code
generation algorithm generates a multi-threaded program
with cross-invocation parallelization (Section 4.5). At run-
time, the scheduler thread checks for dynamic dependences,
schedules inner loop iterations, and forwards synchroniza-
tion conditions to worker threads (Section 3). Worker threads
use the synchronization conditions to determine when they
are ready to execute.

3. Runtime Synchronization
DOMORE’s runtime synchronization system consists of
three parts: detection of dependences at runtime, genera-
tion of synchronization conditions, and synchronization of
iterations across threads. The pseudo-code for the scheduler
and worker threads appear in Algorithms 1 and 2.

3.1 Detecting Dependences
DOMORE’s scheduler thread detects dependences which
manifest at runtime. Shadow memory is employed for deter-

A. for (i = 0; i < N; i++) {

B. start = A[i];

C. end = B[i];

D. for (j = start; j < end; j++) {

E. update (&C[j]);

 }

 }

A

B C

D

E

D

E

(a) (b)

(c)

cross-iteration Dependences

intra-iteration Dependences

Figure 1: Example program: (a) Simplified code for a nested loop in CG (b) PDG for inner loop. The dependence pattern allows
DOALL parallelization. (c) PDG for outer loop. Cross-iteration dependence deriving from E to itself has manifest rate 72.4%.

thread1 thread2 thread3 thread4

A1

B1

C1

D1.1

E1.1

D1.2

E1.2

D1.3

E1.3

D1.4

E1.4

Barrier

D1.5

E1.5

thread1

(c)

thread2 thread3 thread4

A1

B1

C1

D1.1

D1.2

D1.3

D1.4

Schedule

Schedule

Schedule

D1.5

Schedule

Schedule

D2.1

D2.2

D2.3

D2.4

A2

B2

C2

Schedule

Schedule

Schedule

D2.5

Schedule

Schedule

A2

B2

C2

D2.1

E2.1

D2.2

E2.2

D2.3

E2.3

D2.4

E2.4

E2.5

thread1 thread2 thread3 thread4

A1

B1

C1

E1.1

D1.4

E1.2
E1.3

D1.5

E1.4

E1.5

E2.1

E2.2

E2.3

E2.4

E2.5

E1.1

E1.2

E1.3

E1.4

E1.5

E2.1

E2.2

E2.3

E2.5

E2.4

(a) (b)

D2.5

A2

B2

C2

D2.1

D2.2

D2.3

D2.4

D2.5

D1.1

D1.2

D1.3

Barrier

stall

DOMORE

final

DOALL

DOMORE

after partitioning

Barrier Penalty

Idle Cores

Barrier Penalty

Idle Cores

Barrier

Penalty

Barrier

Penalty

Figure 2: Comparison of performance with and without cross-invocation parallelization : (a) DOALL is applied to the inner
loop. Frequent barrier synchronization occurs between the boundary of the inner and outer loops. (b) After the partitioning
phase, DOMORE has partitioned the code without inserting the runtime engine. A scheduler and three workers execute
concurrently, but worker threads still synchronize after each invocation. (c) DOMORE finalizes by inserting the runtime engine
to exploit cross-invocation parallelism. Assuming iteration 2 from invocation 2 (2.2) depends on iteration 5 from invocation 1
(1.5). Scheduler detects the dependence and synchronizes those two iterations.

mining memory dependences. Each entry in shadow mem-
ory contains a tuple consisting of a thread ID (tid) and an
iteration number (iterNum). For each iteration, the sched-
uler determines which memory addresses the worker will ac-
cess using computeAddr function. The computeAddr
function collects these addresses by redundantly executing
related instructions duplicated from the inner loop. Details

of automatic generation of computeAddr can be found in
Section 4.4. The scheduler maps each of these address to
a shadow memory entry and updates that entry to indicate
that the most recent access to the respective memory loca-
tion is by worker thread tid in iteration iterNum. When
an address is accessed by two different threads, the scheduler
synchronizes the affected threads.

Although the use of shadow memory increases mem-
ory overhead, our experiments demonstrate it is an effi-
cient method for detecting dynamic dependences. However,
a more space efficient conflict detecting scheme can also be
used by DOMORE. For example, Mehrara et al. [19] pro-
pose a lightweight memory signature scheme to detect mem-
ory conflicts. The best time-space trade-off depends on end-
user requirements.

3.2 Generating Synchronization Conditions
If two iterations dynamically depend on each other, worker
threads assigned to execute them must synchronize. This re-
quires collaboration between scheduler and worker threads.

The scheduler constructs synchronization conditions and
sends them to the scheduled worker thread. A synchro-
nization condition is a tuple also consisting of a thread
ID (depId) and an iteration number (depIterNum). A
synchronization condition tells a worker thread to wait for
another worker (depId) to finish a particular iteration
(depIterNum).

To indicate that a worker thread is ready to exe-
cute a particular iteration, the scheduling thread sends the
worker thread a special tuple. The first element is a token
(NO SYNC) indicating no further synchronization is neces-
sary to execute the iteration specified by the second element
(iterNum).

Suppose a dependence is detected while scheduling iter-
ation i to worker thread T1. T1 accesses the memory loca-
tion ADDR in iteration i. Shadow array (shadow[ADDR])
records that the same memory location is most recently ac-
cessed by worker thread T2 in iteration j. The scheduler
thread will send (T2,j) to thread T1. When the sched-
uler thread finds no additional dependences, it will send
(NO SYNC,i) to thread T1.

3.3 Synchronizing Iterations
Workers receive synchronization conditions and coordi-
nate with each other to respect dynamic dependences. A
status array is used to assist this: latestFinished
records the latest iteration finished by each thread.
A worker thread waiting on synchronization con-
dition (depId, depIterNum) will stall until
latestFinished[depId] ≥ depIterNum. After
each worker thread finishes an iteration, it needs to update
its status in latestFinished to allow threads waiting
on it to continue executing.

Synchronization conditions are forwarded using
produce and consume primitives provided by a lock-free
queue design [14], which provides an efficient way to
communicate information between scheduler and worker
threads.

Sequential

Program

Partitioner

Code Generation

Scheduler

Code

Worker

Code

Scheduler

Thread

Worker

Threads

Synchronization Scheme

In
p
u
t

C
o
m

p
ile

 T
im

e
O

u
tp

u
t

R
u
n
tim

e

S
e
c
ti

o
n

 4
S

e
c
ti

o
n

 3

Figure 3: Overview of DOMORE compile-time transforma-
tion and runtime synchronization

Algorithm 1: Pseudo-code for scheduler synchronization
Input: iterNum : global iteration number
addrSet← computeAddr(iterNum)
tid← schedule(iterNum, addrSet)
foreach addr ∈ addrSet do

< depTid,depIterNum >← shadow[addr]
if depIterNum 6= −1 then

if depTid 6= tid then
produce(tid, < depTid,depIterNum >)

shadow[addr]← < tid, iterNum >

produce(tid, < NO SYNC, iterNum >)

Algorithm 2: Pseudo-code for worker
< depTid,depIterNum >← consume()
while depTid 6= NO SYNC do

while latestFinished[depTid] < depIterNum do
sleep()

< depTid,depIterNum >← consume()

doWork(depIterNum)
latestFinished[getTid()]← depIterNum

3.4 Walkthrough Example
The program CG illustrates DOMORE’s synchronization
scheme. Figure 4(a) shows the access pattern (value j) in
each iteration for two invocations. Iterations are scheduled
to two worker threads in round-robin order. Figure 4(b)
shows the change of the helper data structures throughout
the execution.

Original Generated
Invoc. Iter. Access Sched. Combined Iter. shadow

- - - - initialize 〈⊥,⊥〉 , 〈⊥,⊥〉 , 〈⊥,⊥〉 , 〈⊥,⊥〉
1 1 A1 T1 I1 〈⊥,⊥〉 , 〈T1, I1〉 , 〈⊥,⊥〉 , 〈⊥,⊥〉
1 2 A3 T2 I2 〈⊥,⊥〉 , 〈T1, I1〉 , 〈⊥,⊥〉 , 〈T2, I2〉
2 1 A3 T1 I3 〈⊥,⊥〉 , 〈T1, I1〉 , 〈⊥,⊥〉 , 〈T1, I3〉
2 2 A2 T2 I4 〈⊥,⊥〉 , 〈T1, I1〉 , 〈T2, I4〉 , 〈T1, I3〉

(a)

�������

�	
��	������

�������

��������

�������

�	
��	������

�������

�	
��	������

�������

�	
��	������

�������

�	
��	������

�������

�	
��	������

�������

�	
��	������

����

��

����

��

���

����

��

����

��

��!���"�� ���#����� ���#�����

(b)

Figure 4: Scheduler scheme running example: (a) Table
showing original invocation/iteration, array element ac-
cessed in iteration, thread the iteration is scheduled to, com-
bined iteration number, and helper data structure values (b)
Execution of the example.

Iteration I1 accesses array element A1, the sched-
uler finds shadow[A1] = <⊥,⊥> meaning no depen-
dence exists. It constructs a synchronization condition
(NO SYNC,I1) and produces it to worker thread T1.
It then updates shadow[A1] to be <T1,I1>, implying
thread T1 has accessed array element A1 in iteration I1.
Worker thread T1 consumes the condition and executes
iteration I1 without waiting. After it finishes, it updates
latestFinished[T1] to be I1. Iteration I2 accesses ar-
ray element A3 and no dependence is detected. A synchro-
nization condition (NO SYNC,I2) is produced to worker
thread T2, which consumes the condition and executes it-
eration I2 immediately. Iteration I1 in the second invoca-
tion accesses element A3 again. Since shadow[A3] =
<T2,I2>, a dependence is detected. So the scheduler pro-
duces (T2,I2) and (NO SYNC,I3) to worker thread T1.
Worker thread T1 then waits for worker thread T2 to finish
iteration I2 (wait until latestFinished[T2] ≥ I2).

br BB1

A:ind1 = PHI [0, Outer_Preheader],

 [ind1.next, BB2]

B:ind1.next = ind1 + 1

c:p1 = ind1 >= N

D:br p1, Sync_Block

G:ind2 = PHI [r1, Inner_Preheader],

 [ind2.next, BB3]

H:ind2.next = ind2 + 1;

I:p2 = ind2 > r2

J:br p2, BB1

E:r1 = A[ind1]

F:r2 = B[ind1]

br BB2

Outer_Preheader

Inner_Preheader

BB1

BB2

Sync_Block

A

B C

D

E F

G

H I

J

K

L

K:r3 = getElementPtr(C[ind2])

L:call update(r3)

br BB2

BB3

A B C D

FE

G H I J

K

L

br BB1

A:ind1 = PHI [0, Outer_Preheader],

 [ind1.next, BB2]

B:ind1.next = ind1 + 1

c:p1 = ind1 >= N

D:br p1, Sync_Block

G:ind2 = PHI [r1, Inner_Preheader],

 [ind2.next, BB3]

r4 = load TIME_STAMP

PRODUCE(r4)

r5 = r4 + 1

store r5, TIMESTAMP

PRODUCE (ind2)

H:ind2.next = ind2 + 1

I:p2 = ind2 > r2

PRODUCE(p2)

J:br p2, BB1

E:r1 = A[ind1]

F:r2 = B[ind1]

br BB2

Outer_Preheader

Inner_Preheader

BB1

BB2

Sync_Block

br BB2

BB3

K:r3 = getElementPtr(C[ind2])

L:call update(t3)

br BB2'

BB3'

t = CONSUME()

p = t == END_TOKEN

br p, Return_block

BB2'

Sync_Block'

PRODUCE_TO_ALL(END_TOKEN)

br BB2'

(a) Pseudo IR code

(b) Dep. graph (c) DAGSCC

(d) Scheduler partition (e) Worker partition

Inner_Preheader'

ret

Return_Block

ind2 = CONSUME()

p2 = CONSUME()

br p2, Sync_Block

BB2''

Figure 5: Running example for DOMORE code generation:
(a) Pseudo IR for CG code; (b) PDG for example code.
Dashed lines represent cross-iteration and cross-invocation
dependences for inner loop. Solid lines represent other de-
pendences between inner loop instructions and outer loop
instructions. (c) DAGSCC for example code. DAGSCC

nodes are partitioned into scheduler and worker threads. (d)
and (e) are code generated by DOMORE MTCG algorithm
(4.2).

Worker thread T1 then consumes the (NO SYNC,I3) and
begins execution of iteration I3.

Using this synchronization scheme, instead of stalling
both threads to wait for first invocation to finish, only thread
T1 needs to synchronize while thread T2 can move on to
execute iterations from the second invocation.

4. Compiler Implementation
The DOMORE compiler generates scalable parallel pro-
grams by exploiting both intra- and inter-invocation par-
allelism. DOMORE first detects a candidate code region
which contains a large number of loop invocations. DO-
MORE currently targets loop nests whose outer loop cannot
be efficiently parallelized because of frequent runtime de-
pendences, and whose inner loop is invoked many times and
can be parallelized easily. For each candidate loop nest, DO-
MORE generates parallel code for the scheduler and worker
threads. This section uses the example loop from CG (Fig-
ure 1) to demonstrate each step of the code transformation.
Figure 5(a) gives the pseudo IR code of the CG example.

4.1 Partitioning Scheduler and Worker
DOMORE allows threads to execute iterations from consec-
utive parallel invocations. However, two parallel invocations
do not necessarily execute consecutively; typically a sequen-
tial region exists between them. In CG’s loop, statement A,
B and C belong to the sequential region. After removing the
barriers, threads must execute these sequential regions be-
fore starting the iterations from next parallel invocation.

DOMORE executes the sequential code in the scheduler
thread. This provides a general solution to handle the se-
quential code enclosed by the outer loop. After partition-
ing, only the scheduler thread executes the code. There is
no redundant computation and no need for special handling
of side-effecting operations. If a data flow dependence ex-
ists between the scheduler and worker threads, the value can
be forwarded to worker threads by the same queues used to
communicate synchronization conditions.

The rule for partitioning code into worker and scheduler
threads is straightforward. The inner loop body is partitioned
into two sections. The loop-traversal instructions belong to
the scheduler thread, and the inner loop body belongs to
the worker thread. Instructions outside the inner loop but
enclosed by the outer loop are treated as sequential code and
thus belong to the scheduler.

To decouple the execution of the scheduler and worker
threads for better latency tolerance, they should communi-
cate in a pipelined manner. Values are forwarded in one di-
rection, from the scheduler thread to the worker threads.

The initial partition may not satisfy this pipeline require-
ment. To address this problem, DOMORE first builds a pro-
gram dependence graph (PDG) for the target loop nest (Fig-
ure 5(b)), including both cross-iteration and cross-invocation
dependences for the inner loop. Then DOMORE groups the
PDG nodes into strongly connected components (SCC) and
creates a DAGSCC (Figure 5(c)) which is a directed acyclic
graph for those SCCs.

DOMORE goes through each SCC in DAGSCC : (1) If an
SCC contains any instruction that has been scheduled to the
scheduler, all instructions in that SCC should be scheduled
to the scheduler partition. Otherwise, all instructions in that

SCC are scheduled to the worker partition; (2) If an SCC
belonging to the worker partition causes a backedge towards
any SCC belonging to the scheduler partition, that SCC
should be re-partitioned to the scheduler. Step (2) is repeated
until both partitions converge.

4.2 Generating Scheduler and Worker Functions
After computing the instruction partition for scheduler
and worker, DOMORE generates code for scheduler and
worker threads. Multi-Threaded Code Generation algorithm
(MTCG) used by DOMORE builds upon the algorithm pro-
posed in [26]. The major difference is that [26] can only
assign a whole inner loop invocation to one thread while
DOMORE can distribute iterations in the same invocation
to different worker threads. The following description about
DOMORE’s MTCG highlights the differences:

1. Compute the set of relevant basic blocks (BBs) for
scheduler (Ts) and worker (Tw) threads. According to al-
gorithm in [26]: A basic block is relevant to a thread Ti if it
contains either: (a) an instruction scheduled to Ti; or (b) an
instruction on which any of Ti’s instruction depends; or (c)
a branch instruction that controls a relevant BB to Ti. DO-
MORE’s MTCG follows these three rules, and additionally
requires that: (d) a BB is relevant to Tw only if it belongs to
the original inner loop; and (e) inner loop header is always
relevant to both Ts and Tw. Rule (d) simplifies the control
flow of code generated for Tw. However, since produce
and consume instructions are placed at the point where de-
pendent values are defined, worker thread may not contain
the corresponding BB because of rule (d). Rule (e) guaran-
tees that any value that is defined in BBs which are not du-
plicated in Tw can be communicated at the beginning of the
duplicated inner loop headers.

2. Create the BBs for each partition. Place instructions
assigned to the partition in the corresponding BB, maintain-
ing their original relative order within the BB. Add a loop
preheader BB and a loop return BB to Tw.

3. Fix branch targets. In cases where the original target
does not have a corresponding BB in the same thread, the
new target is set to be the BB corresponding to the closest
relevant post-dominator BB of the original target. Insert a
sync BB to Tw, which serves as the closest post-dominator
BB for BBs which do not have a relevant post-dominator BB
in Tw. Branch the sync BB in Tw to the loop header.

4. Insert produce and consume instructions. For
Loop flow dependences, produce and consume instruc-
tions are inserted in the BB where the value is defined, if
that BB is duplicated in both threads. Since inner loop live-in
values are used but not defined inside the inner loop, the re-
spective BB are not duplicated in Tw. To reduce the amount
of communications, live-in values which are outer loop in-
variants are communicated at the end of the inner loop pre-
header. And the other live-ins will be communicated at the
beginning of inner loop header. According to the partition
rules, since instructions generating inner loop live-outs to

Algorithm 3: Pseudo-code for generating the computeAddr
function from the worker function
Input: worker : worker function IR
Input: pdg : program dependence graph
Output: computeAddr : computeAddr function IR
depInsts← getCrossMemDepInsts(pdg)
depAddr← getMemOperands(depInsts)
computeAddr←
reverseProgramSlice(worker,depAddr)

the outer loop are partitioned to the scheduler thread, DO-
MORE does not need to handle those live-out values. Fi-
nally, a timestamp is communicated at the beginning of the
inner loop header. This timestamp value gives a global or-
der for iterations from all invocations and will be used for
scheduling and synchronizing iterations.

5. Finalize the communication. To control when each
worker thread should return, an END TOKEN is broadcasted
when exiting the outer loop in Ts. That value will be cap-
tured by the first consume instruction in Tw’s duplicated loop
header. Two instructions are inserted to decide when to re-
turn from Tw: (1) a comparison instruction to check whether
that value is an END TOKEN; (2) a branch instruction tar-
geting the return BB if the comparison instruction generates
true value.

Up to this point, DOMORE has generated the initial code
for scheduler thread and worker thread (Figure 5(d) and
(e)). Later steps generate scheduling code, computeAddr
code which will be inserted into the scheduler function and
workerSync code which will be inserted into the worker
function.

4.3 Scheduling Iterations
DOMORE currently supports two scheduling strategies,
round-robin and memory partition based scheduling. Round-
robin is used by many parallelization techniques. Mem-
ory partitioning (LOCALWRITE [12]) divides the memory
space into disjoint chunks and assigns each chunk to a differ-
ent worker thread, forming a one-to-one mapping. Iterations
are scheduled to threads that own the memory locations be-
ing touched by that iteration. If multiple threads own the
memory locations, that iteration is scheduled to any of them.
Later, the scheduler will detect the conflicts between those
threads and enforce synchronization correctly. DOMORE
allows for the easy integration of other “smarter” scheduling
techniques. Integration of a work stealing scheduler similar
to Cilk [5] is planned as future work.

4.4 Generating the computeAddr function
The scheduler thread uses the computeAddr func-
tion to determine which addresses will be accessed by
worker threads. DOMORE automatically generates the
computeAddr function from the worker thread function

Algorithm 4: Final Code Generation
Input: program : original program IR
Input: partition : Partition of scheduler and worker code
Input: parallelPlan : parallelization plan for inner loop
Input: pdg : program dependence graph
Output: multi− threaded scheduler and worker program
scheduler,worker← MTCG(program,partition)
scheduler← generateSchedule(parallelPlan)
computeAddr← generateComputeAddr(worker,pdg)
scheduler← generateSchedulerSync()
worker← generateWorkerSync()

using Algorithm 3. The algorithm takes as input the worker
thread’s IR in SSA form and a program dependence graph
(PDG) describing the dependences in the original loop nest.
The compiler uses the PDG to find all instructions with
memory dependences across the inner loop iterations or in-
vocations. These instructions will consist of loads and stores.
In the worker thread, program slicing [36] is performed to
create the set of instructions required to generate the address
of the memory being accessed. Presently, the DOMORE
transformation does not handle computeAddr functions
with side-effects. If program slicing duplicates instructions
with side-effects, the DOMORE transformation aborts. Af-
ter the transformation, a performance guard compares the
weights of the computeAddr function and the original
worker thread. If the computeAddr function is too heavy
relative to the original worker, the scheduler would be a bot-
tleneck for the parallel execution, so the performance guard
reports DOMORE is inapplicable.

4.5 Putting It Together
Algorithm 4 ties together all the pieces of DOMORE’s code-
generation. The major steps in the transformation are:

1. The Multi-Threaded Code Generation algorithm
(MTCG) discussed in Section 4.2 generates the initial
scheduler and worker threads based on the partition from
Section 4.1.

2. The appropriate schedule function (Section 4.3) is
inserted into the scheduler based upon the parallelization
plan for the inner loop.

3. Create and insert the computeAddr (Algorithm 3)
schedulerSync (Algorithm 1), workerSync (Al-
gorithm 2), functions into the appropriate thread to han-
dle dependence checking and synchronizing.

Figure 6 shows the final code generated for CG.

5. Evaluation
5.1 Evaluation Results
We evaluated DOMORE on 6 programs to demonstrate the
potential performance gain. Table 1 gives their details. These

 1 void scheduler () {

 2 iternum = 0;

 3 for (i = 0; i < N; i++) {

 4 start = A[i];

 5 end = B[i];

 6 for (j = start; j < end; j++) {

 7 addr_set = computeAddr(iternum);

 8 tid = schedule(iternum, addr_set);

 9 tid_queue = getQueue(tid);

10 schedulerSync(iternum, tid, tid_queue, addr_set);

11 produce(&C[j], tid_queue);

12 iternum++;

 }

 }

 }

13 produce_to_all(END_TOKEN);

 1 void schedulerSync(iternum, tid, queue, addr_set) {

 2 while (addr = get_next(addr_set)) {

 3 depTid = getTid(shadow[addr]);

 4 depIterNum = getIterNum(shadow[addr]);

 5 if (depTid != tid && depIterNum != -1) {

 6 produce(depTid, queue);

 7 produce(depIterNum, queue);

 }

 8 shadow[addr] = (tid, iternum);

 }

 9 produce(NO_SYNC, queue);

10 produce(iternum, queue);

 }

1 void worker() {

2 while (1) {

3 depTid = consume();

4 if (depTid == END_TOKEN)

5 return;

6 if (depTID == NO_SYNC) {

7 doWork();

 }

8 else

9 workerSync(depTid);

 }

 }

1 void doWork() {

2 iternum = consume();

3 tid = getTid();

4 addr = consume();

5 update(addr);

6 latestFinished[tid] = iternum;

 }

1 void workerSync(depTid) {

2 iternum = consume();

3 while (latestFinished[depTid] < iternum)

4 sleep();

 }

Scheduler Function SchedulerSync Function

Worker Function workerSync FunctiondoWork Function

Figure 6: Generated code for example loop in CG. Non-highlighted code represents initial code for scheduler and worker func-
tions generated by DOMORE’s MTCG. Code in grey is generated in later steps for iteration scheduling and synchronization.

programs were chosen because their performance dominat-
ing loop nests contained parallelizable inner loops, and be-
cause inner loop parallelization introduces frequent barrier
synchronizations that limits overall scalability. These two
characteristics are required for DOMORE to have a po-
tential benefit. The inner loops of these programs can be
parallelized using different compiler techniques including
DOALL, Spec-DOALL [31] and LOCALWRITE [12]. Us-
ing these programs, we show that DOMORE parallelization,
by enabling additional cross-invocation parallelization, can
deliver much more scalable parallel programs.

DOMORE is evaluated on an 8-core shared memory ma-
chine. It has two Intel 4-core Xeon E5310 processors run-
ning at 1.60GHz with 8GB of memory. Its operating system
is 64-bit Linux 2.6.24. Sequential versions are compiled us-
ing LLVM Clang 2.9 with -O3.

Figure 7 shows the evaluation results for the outer loop
speedup relative to the original sequential execution. For
the original parallelized version with barriers between in-
ner loop invocations, none scale beyond a small number
of cores. DOMORE shows scalable performance improve-
ments for CG, LLUBENCHMARK and BLACKSCHOLES
because their scheduler threads are quite small compared to
the worker threads (< 5% runtime) and processor utiliza-
tion is high. ECLAT, FLUIDANIMATE and MGRID do not
show as much improvement. The following section provides
details about those programs.

5.2 Case Studies
ECLAT from MineBench [22] is a data mining program us-
ing a vertical database format. The target loop is a two-level
nested-loop. The outer loop traverses a graph of nodes. The
inner loop traverses a list of items in each node and appends
each item to corresponding list(s) in the database based upon
on the item’s transaction number. Since two items might
share the same transaction number, and the transaction num-
ber is calculated non-linearly, static analysis cannot deter-
mine the dependence pattern. Profiling information shows
that there is no dynamic dependence in the inner loop. For
the outer loop, the same dependence manifests in each iter-
ation (99%). As a result, Spec-DOALL is chosen to paral-
lelize the inner loop and a barrier is inserted after each invo-
cation. Spec-DOALL achieves its peak speedup at 3 cores.
For DOMORE, a relatively large scheduler thread (12.5%
scheduler/worker ratio) limits scalability. As we can see in
Figure 7, DOMORE achieves scalable performance up to 5
processors. After that, the sequential code becomes the bot-
tleneck and no more speedup is achieved.

FLUIDANIMATE from the PARSEC [4] benchmark
suite uses an extension of the Smoothed Particle Hydro-
dynamics (SPH) method to simulate an incompressible fluid
for interactive animation purposes. The target loop is a six-
level nested-loop. The outer loop goes through each particle
while an inner loop goes through the nearest neighbors of
that particle. The inner loop calculates influences between
the particle and its neighbors and updates all of their statuses.
One particle can be neighbor to multiple particles, resulting
in statically unanalyzable update patterns. LOCALWRITE

Benchmark Source Suite Function % of Execution Parallelization % of Scheduler/
Program Time Plan Worker
CG NAS [24] sparse 12.2 DOALL 4.1
MGRID SPEC CFP2000 [34] psinv 29.6 DOALL 1.5
LLUBENCH llvmbench [17] main 100 DOALL 1.7
BLACKSCHOLES PARSEC [4] bs thread 100 DOALL 4.5
ECLAT MineBench [22] process inverti 24.5 Spec-DOALL 12.5
FLUIDANIMATE PARSEC ComputeForce 50.0 LOCALWRITE 21.5

Table 1: Details about evaluated benchmark programs

chooses to parallelize the inner loop to attempt to reduce
some of the computational redundancy. Performance results
show that parallelizing the inner loop does not provide any
performance gain. Redundant computation and barrier syn-
chronizations negate the benefits of parallelism. DOMORE
is applied to the outermost loop, generating a parallel pro-
gram with the redundant code in the scheduler thread and
each inner loop iteration is scheduled only to the appropri-
ate owner thread. Although DOMORE reduces the overhead
of redundant computation, partitioning the redundant code
to the scheduler increases the size of the sequential region,
which becomes the major factor limiting the scalability.

MGRID from the SPECFP2000 [34] suite demonstrates
the capabilities of a very simple multi-grid solver in comput-
ing a three dimensional potential field. The target loop is a
three-level nested-loop. DOALL applicable to the innermost
loop. As shown in the results, even after DOMORE opti-
mization, the scalability of MGRID is poor. The major cause
is that the execution time of each inner loop invocation only
takes about 4,000 clock cycles. With increasing number of
threads, the overhead involved in multi-threading outweighs
all performance gain.

6. Related Work
Cross-invocation Parallelization
Loop fusion techniques [9, 37] aggregate small loop invo-
cations into a large loop invocation, converting the prob-
lem of cross-invocation parallelization into the problem
of cross-iteration parallelization. The applicability of these
techniques is limited to mainly affine loops due to their re-
liance upon static dependence analysis. Since DOMORE
is a runtime technique, it is able to handle programs with
input-dependent dynamic dependences. Tseng [35] parti-
tions iterations within the same loop invocation so that
cross-invocation dependences flow within the same work-
ing thread. Compared to DOMORE, this technique is much
more conservative. DOMORE allows dependences to mani-
fest between threads and synchronizations are enforced only
when real conflicts are detected at runtime.

While manually parallelizing a sequential program, pro-
grammers can use annotations provided by BOP [8] or
TCC [11] systems to specify the potential concurrent code

regions. Those code regions will be speculatively executed
in parallel at runtime. Both techniques can be applied to
exploit cross-invocation parallelism. However, they require
manual annotation or parallelization by programmers while
DOMORE is a fully automatic parallelization technique.

Synchronization Optimizations
Optimization techniques are proposed to improve the perfor-
mance of parallel programs with excessive synchronizations
(e.g, locks, flags and barriers).

Fuzzy Barrier [10] specifies a synchronization range
rather than a specific synchronization point. Instead of wait-
ing, threads can execute some instructions beyond the syn-
chronization point. Speculative Lock Elision [29] and spec-
ulative synchronizations [18] design hardware units to al-
low threads to speculatively execute across synchroniza-
tions. Grace [3] wraps code between fork and join points
into transactions, removing barrier synchronizations at the
join points and uses a software-only transactional memory
system to detect runtime conflicts and do recovery.

These techniques are designed to optimize already paral-
lelized programs. DOMORE, instead, takes a sequential pro-
gram as input and automatically transforms it into a scalable
parallel program. DOMORE’s runtime engine synchronizes
two iterations only when necessary, and thus, does not re-
quire further optimization for synchronizations.

Runtime Dependence Analysis
Within the category of runtime dependence analysis, there
are techniques which perform preprocessing of loops to
identify dependences (i.e. scheduling based) and those which
identify dependences in parallel with execution of the loop
(i.e. speculative techniques such as transactional mem-
ory [13, 15, 33] and the LRPD family of tests [7, 31]). DO-
MORE is a scheduling based technique.

Generally, scheduling techniques have a non-negligible
fixed overhead that changes very little based upon the num-
ber of data dependences in the program. For DOMORE,
this is the overhead introduced by the scheduler. Specula-
tive techniques typically have a small amount of fixed over-
head with a highly variable amount of dynamic overhead
based upon the number of data dependences, which trans-
late to misspeculation, in a program. Therefore, for programs

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

O
u

te
r-

lo
o

p
 S

p
ee

d
u

p

#Threads

DOALL

DOMORE

(a) CG

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

O
u

te
r-

lo
o

p
 S

p
ee

d
u

p

#Threads

Spec-DOALL

DOMORE

(b) ECLAT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

O
u

te
r-

lo
o

p
 S

p
ee

d
u

p

#Threads

DOALL

DOMORE

(c) MGRID

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

O
u
te

r-
lo

o
p
 S

p
ee

d
u

p

#Threads

DOALL

DOMORE

(d) LLUBENCH

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

O
u
te

r-
lo

o
p
 S

p
ee

d
u

p

#Threads

LOCALWRITE

DOMORE

(e) FLUIDANIMATE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

O
u
te

r-
lo

o
p
 S

p
ee

d
u

p

#Threads

DOALL

DOMORE

(f) BLACKSCHOLES

Figure 7: Performance Comparison between parallel code with and without cross-invocation parallelism.

with a small number of dynamic dependences, speculative
techniques will typically see better performance improve-
ments. However, for programs that have more than some
small number of dynamic dependences, the fixed scheduling
overhead can prove to be much less than the overhead of
mis-speculation recovery.

DOMORE instruments the program to detect dynamic
dependences between iterations at runtime. A similar idea
has been used to exploit parallelism by the Inspector-executor
(IE) model [27, 30, 32], which was first proposed by Saltz et
al. IE consists of three phases: inspection, scheduling, and
execution. A complete dependence graph is built for all iter-
ations during the inspecting process. By topological sorting
the dependence graph, each iteration is assigned to a wave-
front number for later scheduling. There are two important
differences between DOMORE and IE. First, DOMORE is
able to exploit cross-invocation parallelism while IE is a
parallelization technique limited to iterations from the same
invocation. Second, IE’s inspection process is serialized with
the scheduling process. DOMORE overlaps the inspecting
and scheduling processes for efficiency.

Cilk [5] uses a work stealing scheduler to increase load
balance among processors. DOMORE can use a similar
work stealing technique as an alternative scheduling pol-
icy. Baskaran et al. [2] proposed a technique that uses an
idea similar to IE to remove barriers from automatically
parallelized polyhedral code by creating a DAG of depen-
dences at runtime time and using it to self-schedule code.

This technique can only be used for regular affine codes
whose dependences are known at compile-time while DO-
MORE is designed for irregular codes with dependences that
cannot be determined statically. However, the DAG schedul-
ing technique could also be integrated into DOMORE as
another potential scheduling choice.

Predicate-based techniques resolve dependences at run-
time by checking simple conditions. Moon et al. [20] inserts
predicates before the potential parallel region. If the predi-
cates succeed, the parallel version is executed. If they fail,
the sequential version will be used instead. The same idea
is used by Nicolau et al. [23] to remove synchronizations
between threads. This predicate-based dependence analysis
can be used by DOMORE as an efficient way to detect con-
flict between two iterations.
7. Conclusion
Exploiting the performance of multicore processors requires
scalable parallel programs. Most automatic parallelization
techniques parallelize iterations within the same loop invo-
cation and synchronize threads at the end of each parallel in-
vocation. Unfortunately, frequent synchronization limits the
scalability of many codes. In practice, iterations in differ-
ent invocations of a parallel loop are frequently indepen-
dent. DOMORE exploits this cross-invocation parallelism
by observing cross-invocation dependences at runtime and
only synchronizing iterations when necessary. For six bench-
marks, DOMORE achieves a geomean loop speedup of 2.1×
over parallel execution without cross-invocation paralleliza-
tion and of 3.2× over sequential execution on eight cores.

Acknowledgments
We thank the entire Liberty Research Group for their support
and feedback during this work. We also thank the anony-
mous reviewers for their insightful comments and sugges-
tions. This material is based on work supported by Na-
tional Science Foundation Grants 0964328 and 1047879,
and DARPA contract FA8750-10-2-0253. All opinions, find-
ings, conclusions, and recommendations expressed through-
out this work are those of the authors and do not necessarily
reflect the views of the aforementioned funding agencies.

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern

Architectures: A Dependence-based Approach. Morgan Kauf-
mann Publishers Inc., 2002.

[2] M. M. Baskaran, N. Vydyanathan, U. K. R. Bondhugula,
J. Ramanujam, A. Rountev, and P. Sadayappan. Compiler-
assisted dynamic scheduling for effective parallelization of
loop nests on multicore processors. In PPOPP, 2009.

[3] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe
multithreaded programming for C/C++. In OOPSLA, 2009.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: characterization and architectural implica-
tions. In PACT, 2008.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: an efficient multithreaded
runtime system. In PPoPP, 1995.

[6] R. Cytron. DOACROSS: Beyond vectorization for multipro-
cessors. In ICPP, 1986.

[7] F. H. Dang, H. Yu, and L. Rauchwerger. The R-LRPD
test: Speculative parallelization of partially parallel loops. In
IPDPS, 2002.

[8] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In PLDI, 2007.

[9] R. Ferrer, A. Duran, X. Martorell, and E. Ayguadé. Unrolling
loops containing task parallelism. In LCPC, 2009.

[10] R. Gupta. The fuzzy barrier: a mechanism for high speed
synchronization of processors. In ASPLOS, 1989.

[11] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and con-
sistency. In ISCA, 2004.

[12] H. Han and C.-W. Tseng. Improving compiler and run-time
support for irregular reductions using local writes. In LCPC,
1999.

[13] M. Herlihy and J. E. B. Moss. Transactional memory: archi-
tectural support for lock-free data structures. In ISCA, 1993.

[14] T. B. Jablin, Y. Zhang, J. A. Jablin, J. Huang, H. Kim, and D. I.
August. Liberty Queues for EPIC Architectures. In EPIC,
2010.

[15] T. Knight. An architecture for mostly functional languages.
In LFP, 1986.

[16] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO, 2004.

[17] LLVM Test Suite Guide.
http://llvm.org/docs/TestingGuide.html.

[18] J. F. Martı́nez and J. Torrellas. Speculative synchronization:
applying thread-level speculation to explicitly parallel appli-
cations. In ASPLOS, 2002.

[19] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing
sequential applications on commodity hardware using a low-
cost software transactional memory. In PLDI, 2009.

[20] S. Moon, B. So, M. W. Hall, and B. R. Murphy. A case for
combining compile-time and run-time parallelization. In LCR,
1998.

[21] V. Nagarajan and R. Gupta. Speculative optimizations for
parallel programs on multicores. In LCPC, 2009.

[22] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and
A. Choudhary. Minebench: A benchmark suite for data min-
ing workloads. 2006.

[23] A. Nicolau, G. Li, A. V. Veidenbaum, and A. Kejariwal. Syn-
chronization optimizations for efficient execution on multi-
cores. In ICS, 2009.

[24] NAS Parallel Benchmarks 3.
http://www.nas.nasa.gov/Resources/Software/npb.html.

[25] M. F. P. O’Boyle, L. Kervella, and F. Bodin. Synchronization
minimization in a SPMD execution model. J. Parallel Distrib.
Comput., 29, September 1995.

[26] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic
thread extraction with decoupled software pipelining. In MI-
CRO, 2005.

[27] R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime com-
pilation techniques for data partitioning and communication
schedule reuse. In SC, 1993.

[28] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I.
August. Commutative set: A language extension for implicit
parallel programming. In PLDI, 2011.

[29] R. Rajwar and J. Goodman. Speculative lock elision: enabling
highly concurrent multithreaded execution. In MICRO, 2001.

[30] L. Rauchwerger, N. M. Amato, and D. A. Padua. A scalable
method for run-time loop parallelization. International Jour-
nal of Parallel Programming (IJPP), 26:537–576, 1995.

[31] L. Rauchwerger and D. A. Padua. The LRPD test: Specu-
lative run-time parallelization of loops with privatization and
reduction parallelization. IEEE TPDS, 1999.

[32] J. Saltz, R. Mirchandaney, and R. Crowley. Run-time par-
allelization and scheduling of loops. IEEE Transactions on
Computers, 40, 1991.

[33] N. Shavit and D. Touitou. Software transactional memory. In
PODC, 1995.

[34] Standard Performance Evaluation Corporation.
http://www.spec.org.

[35] C.-W. Tseng. Compiler optimizations for eliminating barrier
synchronization. In PPoPP, 1995.

[36] M. Weiser. Program slicing. In ICSE, 1981.

[37] M. J. Wolfe. Optimizing Compilers for Supercomputers. PhD
thesis, Department of Computer Science, University of Illi-
nois, Urbana, IL, October 1982.

