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ABSTRACT
Transient faults are emerging as a critical reliability concern in
modern microprocessors. Redundant hardware solutions are com-
monly deployed to detect transient faults, but they are less flexible
and cost-effective than software solutions. However, software so-
lutions are rendered impractical because of high performance over-
heads. To address this problem, this paper presents Runtime Asyn-
chronous Fault Tolerance via Speculation (RAFT), the fastest tran-
sient fault detection technique known to date. Serving as a layer
between the application and the underlying platform, RAFT auto-
matically generates two symmetric program instances from a pro-
gram binary. It detects transient faults in a non-invasive way and
exploits high-confidence value speculation to achieve low runtime
overhead. Evaluation on a commodity multicore system demon-
strates that RAFT delivers a geomean performance overhead of
2.83% on a set of 30 SPEC CPU benchmarks and STAMP bench-
marks. Compared with existing transient fault detection techniques,
RAFT exhibits the best performance and fault coverage, without re-
quiring any change to the hardware or the software applications.

1. INTRODUCTION
Transient faults, also known as soft errors, are caused by external
events such as particle strikes [3, 21, 25, 30]. These faults may
lead to program crash or system failure, without leaving any trace.
A combination of exponentially growing transistor counts and volt-
age scaling makes transient faults a critical concern for the semi-
conductor industry. Oracle America Inc. acknowledges that clients
including America Online (AOL), eBay and Los Alamos National
Labs have suffered from system failures due to transient faults [4,
18]. A recent study shows that a BlueGene/L machine with 104
nodes deployed in Lawrence Livermore National Labs experiences
soft errors once every four hours [8]. Given that the reliability per
bit is estimated to drop 8% per generation of processors [6], it is
critical to ensure fast and effective transient fault tolerance on mod-
ern and future architectures.

Recently proposed transient fault detection techniques rely on re-
dundant execution in either hardware or software. Specialized re-
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dundant hardware is commonly employed to detect transient faults
transparently. For example, IBM S/390 [33], Boeing 777 airplanes
[41], and HP’s Non-stop [13] all use redundant hardware for fault
tolerance. However, these solutions require specialized hardware
components and additional verification cost [2, 33, 29]. Moreover,
hardware solutions cannot adapt to changes in deployment environ-
ment or scope of protection.

Current architectural trends toward multicore microprocessors nat-
urally provide additional resources, making software redundant ex-
ecution more viable than ever. Existing software proposals [22,
26, 31, 37, 42] typically insert redundant code into a program at
compile time or runtime, and check for transient faults at runtime.
Among these proposals, compiler-based techniques [26, 31, 37, 42]
are only applicable to programs whose source codes are available.
Separately compiled modules, such as libraries, cannot be protected
using compiler-based techniques due to the absence of source code
at compile time. Runtime techniques, such as PLR [31], use dy-
namic instrumentation to duplicate program execution at the pro-
cess level and instrument binaries for fault detection. This approach
still has high performance overhead due to the cost of dynamic bi-
nary instrumentation and barrier synchronizations at every system
call.

To address the performance and applicability issues of software
fault detection techniques, this paper presents RAFT, a Runtime
Asynchronous Fault Tolerance technique that detects transient faults
with low overhead. RAFT serves as a light-weight virtual layer
between an application and the underlying platform. It takes a
program binary as input and duplicates its execution automatically.
During execution, it monitors both original and duplicated program
instances’ behavior at the system call level using a process moni-
toring utility provided by the operating system. The arguments of
system calls from both instances are compared for equality. A value
mismatch means a transient fault has occurred and RAFT reports
this to the user. Unlike compiler-based techniques that must ob-
tain knowledge of library functions for fault detection, RAFT must
only understand the relatively stable and well-defined set of system
calls.

The key insight behind RAFT is that redundant execution can be ac-
celerated by speculatively removing data dependences. Whenever
possible, RAFT allows the process that first invokes a system call to
continue execution with a speculated return value, without execut-
ing the call. When the other process invokes the same system call,
RAFT compares the arguments of the two invocations to check for
transient faults. If the arguments mismatch, RAFT reports transient
faults and stops program execution. If no fault occurred, the system
call is executed and its return value is checked against the specu-



lated one. If these two values differ, a misspeculation occurs, and
RAFT uses a fast misspeculation recovery scheme using copy-on-
write mechanism to continue program execution. With value spec-
ulation, most barrier synchronizations required by prior approaches
are eliminated, leading to much lower performance overhead.

The contribution of this paper is the design and implementation of a
runtime speculative fault tolerance technique named RAFT. RAFT
provides the fastest transient fault detection known to date with
full transient fault coverage. Evaluation shows that RAFT deliv-
ers a geomean overhead of 2.83% for 30 SPEC CPU benchmarks,
5 times faster than the best available software fault tolerance tech-
nique. The implementation in this paper does not support multi-
threaded programs. However, RAFT can be extended to protect
multi-threaded applications that have deterministic outputs.

Applying RAFT to applications with non-deterministic outputs may
result in false alarms. Research on redefining faulty behavior of
such applications and extend RAFT to support them is a future
work of this paper.

2. MOTIVATION
Many existing solutions detect transient faults during program exe-
cution via redundant computation. The sphere of replication (SoR)
[24] is defined as the scope of fault coverage and values requiring
special handling. Values that enter the SoR must be replicated for
redundancy and values that exit the SoR must be checked for faults
to ensure their correctness. Table 1 lists several existing represen-
tative fault detection techniques.

Hardware techniques rely on duplicated hardware modules, and
provide protection for the processor core. Rotenberg’s AR-SMT
[28] uses an 8-way simultaneous multi-threading trace processor
for detecting transient faults in processors. Simultaneous Redun-
dant Threading (SRT) [24] and Chip-level Redundant Threading
(CRT) [19] exploit simultaneous multi-threaded processors and
multiple cores respectively for redundant execution and value check-
ing. These techniques use duplicate hardware modules, and check
values when they escape the SoR for fault detection. In addition to
using more chip area and paying extra chip design and verification
cost, the hardware techniques do not have the flexibility of chang-
ing which modules to duplicate after deployment. ECC memory,
as a hardware technique for memory transient fault tolerance, can
help protect executions against memory faults with some probabil-
ity, but may fail on multiple-bit flip events and is too expensive to
apply to processor cores.

On the contrary, software redundant execution approaches are more
cost-effective and more flexible [5, 7, 26, 31, 37, 42]. Software
transient fault detection techniques typically fall into three cate-
gories: thread-local duplication, redundant multi-threading, and
process-based redundancy, as shown in Table 1. Thread-local du-
plication techniques such as EDDI [22] and SWIFT [26] redun-
dantly execute instructions within a single thread, exploiting in-
struction level parallelism to improve performance. Shoestring [11]
performs selective instruction duplication to achieve lower over-
head than both EDDI and SWIFT, but at the cost of lower fault
coverage. Redundant multi-threading techniques (e.g. SRMT [37]
and DAFT [42]) use multiple threads to execute program codes re-
dundantly. Process-based redundant techniques (e.g. PLR [31])
use multiple processes instead of threads, at the cost of maintain-
ing multiple memory states.

All these techniques are typically implemented using either com-
piler transformations or runtime systems. Compiler-based tran-
sient fault detection techniques, such as EDDI [22], SWIFT [26],

SRMT [37], DAFT [42], and Shoestring [11], all require program
source code for recompilation, and cannot detect any transient fault
occurring in separately compiled modules. Software redundant
multi-threading [37] uses multiple threads to run redundant copies
of a program. These techniques cannot issue redundant store in-
structions because only one shared memory state is maintained.
Before a memory operation is executed, its operands are communi-
cated between threads and checked for consistency. Consequently,
frequent barrier synchronization is required and adds significant
performance cost. DAFT [42] improves the performance of SRMT
by allowing one thread to execute the memory operations without
waiting for confirmation from the other thread. Removing bar-
rier synchronizations, combined with decoupled execution, helps
DAFT to reduce the overhead of fault detection from 200% to 38%.

Compared with compiler-based techniques, runtime techniques do
not require source code recompilation and can protect separately-
compiled modules. One such implementation called PLR [31], a
dynamic instrumentation technique, provides transient fault detec-
tion with the minimum runtime overhead (16.9%) among all soft-
ware solutions with full coverage. This technique duplicates the
original program into several instances at runtime, maintaining one
private memory space for each instance. Only externally visible
values need to be verified before they escape user space.

PLR synchronizes the main and the redundant processes for tran-
sient fault detection, when any value escapes user space to the ker-
nel. The main process executes the system call. The redundant
process resumes execution only after the system call is completed.
This barrier synchronization puts inter-core communication on the
critical path of program execution, leading to slower performance.

This paper proposes RAFT, a runtime speculative transient fault
framework. Like PLR, RAFT applies to program binaries and only
verifies values that escape user space. However, RAFT eliminates
frequent barrier synchronization via value speculation. RAFT spec-
ulates the return values of system calls to allow the leading process
to continue execution past the system call. In addition, RAFT pro-
vides wider SoR, by memory duplication at runtime.

Figure 1 shows a simplified code example from genome, a STAMP
benchmark. Figure 2 compares PLR and RAFT by showing their
execution plan using this example code. This execution plan demon-
strates that barrier synchronizations add considerable runtime over-
head to the program. Although both process instances are executing
the same program binary, the cycles spent on executing each piece
of code, such as B1, B2, ..., are not the same because of vari-
ous runtime factors such as cache behavior and process scheduling.
Forcing barrier synchronization at every system call requires all
processes to wait for the slowest one to reach the synchronization
point, consequently slowing down the overall program execution.
In contrast, RAFT allows one process to speculate the return val-
ues of the sys_write system call without actually executing it,
therefore does not require waiting till the other process to invoke
the same system call and the barrier synchronization between the
processes. If a misspeculation occurs, an efficient misspeculation
recovery scheme is employed to continue execution from a previ-
ous correct program state. Combining all the features above, RAFT
achieves very low runtime overhead with full fault coverage.

Duplicating both the register and memory states of the program
allows RAFT to provide transient fault detection for transient faults
in both processor core and memory subsystems. Compared with
previous work, RAFT yields the lowest performance overhead for
transient fault detection without compromising fault coverage.



Approach Technique Main Need No. of HW No. of Sphere of Reported
Memory Source Execution Software Replication Overhead
Usage Code Units Contexts Processor Memory

SWAT [17] 1× No 2 cores 2 threads Most None 5%
Specialized AR-SMT [28] 1× No 8-way trace proc. 8 threads All None 16.7%
Hardware CRT [19] 1× No 2 cores 2 threads Most None Unreported

SRT [24] 1× No 2-way SMT proc. 2 threads Most None Unreported
Hybrid-SRMT [37] 1× Yes 2 procs. 2 threads Most None 19%

Thread-local EDDI [22] 2× Yes 1 proc. 1 thread Most All 52.2%
Duplication SWIFT [26] 1× Yes 1 proc. 1 thread Most None 45%

Shoestring [11] 1× Yes 1 proc. 1 thread Most None 15.8%
Redundant SRMT [37] 1× Yes 2 procs. 2 threads Most None 400%
Multi-Threading DAFT [42] 1× Yes 2 cores 2 threads Most None 38%
Process-based PLR [31] 2× No 4-way SMP 2 processes Most None 16.9%
Redundancy RAFT[This paper] 2× No 2 cores 2 processes Most All 2.83%

Table 1: Comparison Among Transient Fault Detection Techniques.

  int printf(const char *format, …) {!
E:   …!
      syscall(sys_write);!
F:  …!
  }!

A: for ( i = 0; i <= vector_size; i++) {!
B: ! char * charPtr = computePtr(Ptr);!
C: ! j = compute( charPtr );!
D: ! printf(“Segment %li (@%li) = %s \n”,!

! !    i, j,  vector(Ptr, i) );!
}!

Figure 1: Simplified Code Example from STAMP Benchmark genome
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Figure 2: Execution plan of transient fault detection with and without speculation for the program in Figure 1 with vector_size
= 3. The execution time of the same instruction blocks, such as B1, B2, are not the same across both processes is because of various
runtime factors, such as cache behavior and process scheduling.



3. Runtime Asynchronous Fault Tolerance via
Speculation

RAFT is a runtime system implemented using an OS-level pro-
cess monitoring tool. The ptrace utility is a POSIX standard
that is provided by Linux/Unix, Mac OS, and Solaris systems to
provide process monitoring and debugging capabilities. This mon-
itoring utility is exploited in RAFT as a method of trapping system
calls and comparing the values of their arguments to detect tran-
sient faults. This approach ensures that RAFT can transparently
detect transient faults occurring in a non-invasive way.

3.1 Overview
RAFT utilizes a process monitoring utility (ptrace) to intercept
system calls invoked by a program. As a light-weight interface be-
tween the operating system and user applications, ptrace adds
very little runtime overhead. Figure 3 demonstrates the overall
structure of RAFT and the interaction between several components
of the system. RAFT first takes the program binary and its input,
then spawns one process that execute the binary redundantly. Upon
process creation, RAFT immediately pauses that process, and in-
jects a fork system call into the just-created child process App.
The child process App spawns another process App’ from itself,
inheriting all its virtual address table and signal handling table.
This is critical to eliminate potential false-positives, especially on
systems with address space layout randomization (ASLR) enabled.
From then on, App gives up its parentship of App’ to the tracer
process. Both App and App’ become processes that are traced
only by the tracer process RAFT.

During the execution, RAFT serves as a virtual layer between the
application and the underlying OS services and devices. It traps
every system call invoked by either program instance. Section 3.2
provides details on system call trapping. After a system call is
trapped, the calling thread’s register file is examined to find out
the type of the system call. RAFT then compares the system call’s
arguments against those in the other program instance to check for
transient faults, if available, according to its specific calling con-
text. If the system call reads a process’ memory space through
pointer arguments, the memory content is also checked. If no tran-
sient fault is detected, RAFT executes the system call and lets the
program instance continue execution. This runtime system predicts
the results of system calls with high confidence, which allows spec-
ulative execution of the program. Section 3.3 introduces the mis-
speculation detection and recovery mechanism in RAFT. If the re-
sult of a system call varies from call to call, RAFT skips speculation
and executes them in a synchronous fashion to avoid high overhead
of logging and rollbacks. When misspeculation is detected after
a system call is completed, misspeculation recovery schemes are
employed to ensure continuous correct execution of both program
instances.

3.2 System Call Trapping
RAFT detects transient faults at system call interface level. The
idea is to intercept all system calls initialized from two identical
program instances. There is a fixed set of well-defined system
calls provided by the operating system to applications. For modern
Linux operating systems, a total of 298 system calls are defined. It
is reasonable to specify customized system call arguments verifica-
tion for each system call.

Despite the redundant execution of program binaries, side-effecting
work should only happen once. For example, a printf (which
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Figure 3: RAFT Structure Overview

transitively invokes a write system call) cannot be redundantly
executed. Based on whether the results of the system call can be
speculated and whether the system call needs to be executed in both
copies of the program instances, all system calls are classified into
three categories. RAFT handles system calls differently depending
on which category they belong to.

• Synchronous: This category includes system calls that have
no predictable program state after system call execution. Such
system calls cannot be executed redundantly. Some read in-
structions, such as destructive read from standard input or
other devices, can only be executed once. After the read, the
content will be destroyed and not be available for a redun-
dant read. Wrong argument of these calls will cause either
device error, or un-recoverable program states. Therefore,
these calls cannot be speculated and must only be executed
after its arguments are verified to be fault free. For example,
sys_read and sys_lseek are such system calls. We se-
lected out these system calls out and execute them in a syn-
chornous fashion, to avoid heavy logging and re-execution.
Experiments on benchmarks show that this kind of system
call accounts for <1% of total number of system calls issued
at runtime.

• Asynchronous duplicate: Some system calls have no pre-
dictable return values, but their return values must be du-
plicated in both program instances to ensure correct program
execution, such as sys_times. These system calls need
to have identical return values in both program instances,
but barrier synchronization is not necessary. RAFT allows
the first instance that invokes the call to execute the call and
keeps a record of its return values. When the other instance
invokes the same call, RAFT compares their arguments, then
ensures the call to return the same value for the second in-
stance. About 80% of system calls issues at runtime belong
to this category.

• Asynchronous single: This category includes system calls
with return values that can be speculated with high confi-
dence, but cannot be executed redundantly, e.g. sys_write.
Among all system calls invoked dynamically on SPEC bench-
mark programs, 80.66% calls belong to this category. RAFT
does not require barrier synchronization for these system calls.
If one copy of the process invokes sys_write ahead of
the other process, it can continue executing the rest of the
code without committing the write. The system call’s return
value is speculated and used in the process’ later computa-
tion. When the other process invokes the same system call,
RAFT compares the arguments of these two system calls for
verification. If any fault occurs, RAFT is able to report the
fault to users before the write is committed.



3.3 Misspeculation Detection and Recovery
Misspeculation occurs when the results of a system call differ from
what RAFT predicts. The speculatively executing program instance
must be cancelled if RAFT made a wrong prediction. RAFT fea-
tures a misspeculation recovery scheme to restart program execu-
tion from the point of misspeculation.

In order to efficiently record program state, RAFT exploits the
copy-on-write semantics of the fork system call. If the tracing
process detects misspeculation, it kills the speculative process and
duplicates the non-speculative process for later computation. The
copy-on-write semantics have previously been used to implement
speculative systems [23].

To inject a fork system call into the non-speculative process, RAFT
follows the algorithm described in Algorithm 1. In the following
algorithm, W1 refers to the first invocation of the program binary,
W2 refers to its replicate, and W refers to either one of the worker
processes (W1 or W2).

Algorithm 1: Misspeculation Detection and Recovery
repeat

intercepts system call sys from a traced process W(either W1 or W2)
// Code for fault detection
if sys’s return value was speculated in W2 then

// symmetric if W1 is the speculative process
if W1.Regs.rax != W2.specvalue[sys] then

kill(W2.pid, SIGKILL)
// duplicate the non-speculative process W2
make a copy of the register file of W2
W1.Regs.rax = SYS_fork
// the instruction SYSCALL on x86_64 is 0F 05,
// which takes 2 bytes. This number is architecture dependent.
W1.Regs.rip = W1.Regs.rip-2
signal W1 to continue the system call
wait for signals from kernel, upon returning from SYS_fork
W2.pid = return value
copy back original register file of W2
continue executing the program

end if
end if

until W1 and W2 both exit

For the code example in Figure 1, RAFT speculates the number of
bytes being transmitted by system call sys_write and allows the
process arriving first to proceed without waiting for the other pro-
cess. When the other process calls sys_write, RAFT executes
the call and then compares the return value with the speculated one.
If the two values are the same, both processes proceed normally.
Otherwise, RAFT sends a signal to kill the misspeculated process.
Another signal is sent to the program instance with correct values
to force a process duplication. A new process is then spawned,
and continues the rest of program execution redundantly with the
correct program state. Evaluation shows that one misspeculation
recovery only costs a couple of millisecond at runtime.

3.4 Virtual Memory Space Synchronization
To compare execution of two processes, the original one and its
redundant copy, the fault detection may have to compare virtual
memory addresses at some system call. This is crucial to ensure
identical memory layout of all processes to eliminate false-positives.
As a result, some system calls, such as sys_mmap, must be exe-
cuted in all copies of processes for a program to continue. Ad-
ditionally, these two processes must have identical virtual address
table to start with. In systems with address space randomization
(ASR), independent processes executing the same binary can have
randomized virtual addresses.

One solution to this problem is to disable address space random-
ization entirely by configuring the operating system. However, this
also prevents other applications, especially security sensitive appli-
cations, from benefiting from ASR.

RAFT solves this problem by allowing the first process that issues
sys_mmap to proceed without waiting for the other process. Upon
returning from the system call, RAFT keeps a record of the virtual
memory address that this system call allocates. When the other
process invokes sys_mmap, RAFT first compares their arguments,
then forces this call to map to the same virtual address as the first
process, by setting the MAP_FORCED flag. Because both pro-
cesses maintain the same memory layout, both processes should be
in the same program state before and after the system call.

There are also cases when sys_mmap intends to map files to a
process’ virtual memory space and performs read and write opera-
tions. By intercepting mmap system call, RAFT can identify such
requests and map that file in RAFT’s own memory space. RAFT
then returns a protected page address to the two program instances.
When these programs intend to access the protected page, a signal
is sent to and trapped in RAFT. At that point, RAFT checks for
transient faults, then performs the actual read and write access only
once on the memory mapped file.

3.5 Signal Handling
In RAFT, signals sent to the program and signals raised from one
copy of the program must be handled in a way that is transparent to
the user. There can be two kinds of signals, as described below.

Internal Signal: Some transient faults may flip a bit in a regis-
ter that holds a memory address the program loads from. Since
the two identical programs do not share memory space, memory
operations are executed without being verified. Consequently, a
transient fault may cause a segmentation fault raised by one of the
processes. Similarly, other exceptions, such as divide-by-zero, may
also occur as a result of a transient fault. To distinguish a transient
fault from a normal internal signal raised by the program, such as
signals caused by program bugs, RAFT traps all signals raised by
both processes. If the two processes both raise the same internal
signal, it is a normal program signal. Otherwise, RAFT alerts the
users the existence of a transient fault.

External Signal: As a transparent transient fault detection tech-
nique, RAFT maintains the original deterministic behavior of the
original program. External signals may cause non-determinism
among the two copies of programs. For example, the user may
press ctrl-c from command line, which sends a SIGINT signal
to the program. RAFT should make sure the two program copies
behave as if only one program is running and abort the program.

To achieve this, RAFT registers special signal handlers for all ex-
ternal signals. Specialized signal handlers are registered at the be-
ginning of the program. When an external signal is received, the
corresponding signal handler is called and proper actions are taken.
For example, in the case of a SIGINT sending to the program from
command line, RAFT communicates SIGINT to both processes,
terminates their execution and kills itself as well.

3.6 Automatic Memory Page Walking
To protect program execution from transient faults in memory sub-
systems, RAFT adopts process-level duplication and uses redun-
dant memory space. However, two processes, one forked from the
other, share the same physical memory page, if no value is written
to that page. As a result, memory faults occurring in pages that are



shared by the two processes may be read by both program copies
hence introducing faulty values.

RAFT solves this problem via automatic memory page walking.
The idea is to check the two processes’ physical page table peri-
odically. If any of the pages that are physically in memory has the
same physical page address for both processes, RAFT automati-
cally loads a word from the page, and immediately writes the same
value back, utilizing the copy-on-write feature of forked processes.
The operating system will automatically create another physical
page as a tainted copy.

3.7 Window of Vulnerability
There are several cases where RAFT-protected program is still vul-
nerable to transient faults. One case is that faults occurring in
RAFT itself may cause an unrecoverable error or erroneous results
or undefined program behavior. Although RAFT itself represents a
single point of failure, it only occupies the CPU for a very short du-
ration and only consumes a few clock cycles. Typically the RAFT
process only takes less than 0.01% CPU time throughout program
execution. The probability of transient faults occurring in registers
while RAFT code is running is extremely low.

If a transient fault hits the main memory that holds data used in
the tracing process, it may lead to program crash or wrong output.
However, such faults may still be benign faults or be detected via
transient fault detection. For example, if the fault flips a bit of a
word in memory, which is overwritten before the value is loaded,
the fault is a benign fault. If a memory fault changes a value stored
in memory and results in a value mismatch in fault detection code,
it can also be detected.

Besides, RAFT does not protect the operating system and its ser-
vices executed in kernel. Transient faults occurring in the kernel
code may still cause program failure or erroneous program out-
put. For OS intensive programs, all application level fault tolerance
techniques, including RAFT, fail to provide coverage for the kernel
code.

4. EVALUATION
This section presents an evaluation of RAFT on a set of 30 opti-
mized benchmarks from SPEC2000, SPEC2006 and STAMP bench-
mark suites. The program binaries for all the benchmarks are gen-
erated using gcc 4.5.2 with optimization option -O2. The bench-
marks are selected from a repository of benchmark suites, based
on availability. The experiments are performed on a 2.4 GHz Intel
Core 2 Quad-Core (Q6600) machine running Linux 2.6.38, with
two 4MB L2 caches.

4.1 Benchmark Characteristics
The benchmark programs used for evaluation are from SPEC CPU
2000, SPEC CPU 2006, and STAMP benchmark suites. The rea-
soning behind the benchmark selection is: (a) All previous software-
only fault tolerance techniques used SPEC benchmarks for eval-
uation. We used these programs for fair comparison with previ-
ous work; (b) SPEC benchmarks were selected as representatives
of real-world applications, including general-purpose applications
and scientific applications. For example, 433.milc is developed
by the MIMD Lattice Computation (MILC) collaboration for do-
ing simulations of four dimensional SU(3) lattice gauge theory on
MIMD parallel machines. This code is used for millions of node
hours at DOE and NSF supercomputer centers; (c) The STAMP
benchmark suite consists of real world applications that are de-
ployed for everyday use.

As the implementation of RAFT in this paper does not support
multi-threaded programs, evaluation on the STAMP benchmark pro-
grams used the single-threaded mode, with the biggest input sets.

4.2 Window of Vulnerability
This paper considers transient faults in register files, physical mem-
ory, and control-logic. Table 2 shows various types of transient
faults and the way they are modelled in this paper. All reliabil-
ity evaluation demonstrated in this paper injects faults into all three
processes (two workers and one tracer). This fault injection method
does not inject faults into the operating system itself. However, the
time spent in the tracer process includes the time that all system
calls spent in the operating system.
To study the window of vulnerability of RAFT, a process tracing
tool (ptrace) was used to simulate single-event-upset (SEU) [24,
27, 36] transient faults at runtime in both register files and the mem-
ory (in a way similar to [14, 32, 15]). Figure 4 shows the fault
distribution of injected faults. The horizontal axis shows the faults
injected into register files (R) or memory (M) for each benchmark
program. The vertical axis is the percentage of faults in each cate-
gory.

Injected faults are categorized into four groups based on the out-
come of the program: (1) Benign faults; (2) Detected; (3) Timeout;
and (4) Silent Data Corruption (SDC). An injected fault is a benign
fault if it does not affect program execution or change the program
output. RAFT does not detect benign faults, since the program exits
normally in this case. RAFT can detect injected non-benign faults
through redundant computation and value checking. This kind of
fault is classified as Detected. A timeout scheme is used to detect
faults that cause the program to freeze or loop forever. A scale is
predefined (set as 10 in this paper) and an estimated execution time
(ExecutionT ime) of the program is set from a profiling run. If
the program takes more than scale × ExecutionT ime to finish,
our fault injection tool aborts the program and reports Timeout as
an indication that a transient fault happened. If the program ex-
its normally with incorrect output (compared with standard output)
and RAFT fails to report transient faults to the user, this case is
classified as Silent Data Corruption (SDC).

4.2.1 Register Fault Simulation
The R columns in Figure 4 shows the experimental results from
injecting faults into the register file at program runtime. First, a
profile run of the original program binary is timed to estimate how
long it may take to execute the program. Before fault injection, our
tool randomly selects one point in time, one random program in-
stance, one random bit of a register, as well as one random register
among general-purpose, floating point, XMM, and flag registers.
During program runtime, this fault injection simulation issues an
alarm after a random period of time. It then sends a signal to the
randomly selected process, stops its execution, and flips the ran-
dom bit of the selected register. The particular program instance
then continues execution. In our evaluation, we inject faults into all
three processes: the tracer process and two redundant program in-
stances, proportional to the amount of CPU time consumed during
runtime. Since the monitoring process spends very little CPU time
(CPU utilization is lower than 0.01%), it is extremely unlikely that
a transient fault occurs while the monitoring process is executing.
It must also be noted that this fault injection method does not in-
ject faults into the operating system. Usually, an unloaded system
(not executing anything but the operating system itself) consumes
about 0.1% CPU time on average. Finally, the execution result of



Reason Symptom Modelling
Instruction instruction corruption Modify the value in a random memory address that maps to the program binary

Physical Memory instruction corruption or data corruption Modify random memory address that may contain instruction or data
Memory Bus instruction fetch error or data corruption Modify random memory address that may contain instruction or data
Register File data corruption Flip bits in a random general-purpose, XMM, floating point, or register

Program Counter incorrect program flow Bit flip in the PC register
Control Logic PC value corruption Bit flip in the PC register

Table 2: Transient fault types and modelling
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Figure 4: Register (R) and Memory (M) Transient Fault Distribution

the fault-injected program is compared against the reference output
to ensure that the RAFT-protected program’s externally visible be-
havior is correct. Figure 4 shows the aggregated fault distribution
over 3000 runs.

Figure 4 show that a large percentage of transient faults injected are
benign faults, which do not crash the program or modify the out-
put. Among the non-benign faults, all faults injected are detected
by RAFT via either value comparison, customized signal handling,
or timeout watchdog. As timeout occurs very rarely (0.1% on av-
erage), it is hardly visible in Figure 4.

4.2.2 Memory Fault Simulation
Most previous software solutions do not provide memory fault
tolerance. The instruction-level redundancy and redundant multi-
threading approaches only maintain one memory state, and rely on
ECC memory to protect programs against memory transient faults.
Previous process-based redundant techniques, such as PLR [31],
also lacks protection for memory. Redundant processes share mem-
ory in an copy-on-write way. This means the processes share phys-
ical pages, if no value is written to that page. Transient faults af-
fecting those pages cannot be detected by PLR. This paper is also
simulate and evaluate RAFT against transient faults in memory.

The M columns in Figure 4 demonstrate the results from inject-
ing faults into memory subsystems. Similar to injecting faults into
register files, memory fault injection involves a profile run, and a
random selection of a program point. Subsequently, memory fault
injection randomly selects one virtual memory address owned by
one process, and randomly flips a bit of the value stored in that
address. This memory address may contain data or text of the pro-
gram. Memory faults are injected into all three processes, with the
likelihood of the occurrence of the faults being proportional to the
amount of physical memory used by each process. Each program

was executed 3000 times with one memory fault injected each time.

Memory faults injected into RAFT itself may also be detected. For
example, if a fault changes the value in memory that stores argu-
ments for later comparison, this fault will be detected during value
verification. Also, a faulty value in memory may be loaded to one
of the processes and results in a value mismatch in later fault de-
tection. However, if an injected memory fault changed a value in
memory that is transitively passed on to both processes, and that
value affects the final output, RAFT will not be able to detect it.

As shown in the Figure 4, memory faults usually do not result in
erroneous program output. As observed in experiments, a large
percentage of memory faults are benign faults. Only an average
of 12.83% memory faults are non-benign faults and are detected
by RAFT. For 179.art, the original program only consumes 10MB
memory at runtime, therefore the probability of memory faults oc-
curring in the monitoring process is as large as 50%. Experimental
results shows that among 129 detected faults and 2 timeouts out of
3000 runs, 16 detected faults and 1 timeout are caused by memory
faults in the monitoring process.

4.3 Performance
Figure 5 shows the runtime overhead (vertical axis in the figure)
of RAFT, normalized with respect to the original program execu-
tion without any transient fault detection. The result is compared
with RAFT without speculation enabled. We also evaluated the per-
formance overhead of dynamic instrumentation (PIN), which is the
base of a previous related work PLR [31], on the same set of bench-
marks. This is measured by executing the original program binary
within the PIN framework on an unloaded machine, without any in-
strumentation. The average overhead of the framework alone is as
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Figure 5: Performance overhead for RAFT, with and without speculation

high as 48.57%. Running redundant instances and runtime instru-
mentation on top of the framework, in addition to frequent synchro-
nization, can only adds more runtime overhead. Compared with
dynamic instrumentation approaches, such as PLR, RAFT provides
the same applicability, but better coverage and much lower runtime
overhead.

Some benchmarks, such as 183.equake, feature system calls in in-
ner loops. This results in a large amount of inter-process bar-
rier synchronization, if speculation is not available. Frequent syn-
chronizations prevent overlapping of useful computation with fault
checking, hence the synchronization overhead is placed on the crit-
ical path. As a result, running RAFT on 183.equake without spec-
ulation adds 46% overhead compared with the unprotected sequen-
tial program, while RAFT (with speculation) added only 16.60%
performance overhead. Similarly, 171.swim, 433.milc, genome
and kmeans share the same patterns, and gained huge performance
improvement from speculation.

In this evaluation, RAFT never misspeculates because the system
calls’ return values are all correctly speculated. In cases where
misspeculation occurs, it costs merely a couple of millisecond for
the program to recover from a misspeculation.

As a technique that maintains redundant memory states, RAFT
adds memory consumption to the system. A program and its redun-
dant copy together occupy twice as many physical memory pages
as the original unprotected program. RAFT itself, however, only
consumes stack space and dynamically allocates (and frees) limited
amounts of memory space to buffer data system call arguments for
transient fault detection. In the experiments conducted in this pa-
per, the tracer process consumes around 9.5MB virtual memory at
peak.

5. RELATED WORK
Section 2 summarized the features of different transient fault de-
tection techniques. This section discusses additional related work.

DIVA [39] uses additional hardware checkers to provide fault pro-
tection. DieHard [5] proposed by Berger et al. uses redundancy

on general-purpose machines for memory fault tolerance. Extermi-
nator [20] uses process replicas to detect memory errors with high
probability. RAFT also detects transient faults in memory, as well
as register files.

Tapus et al. [34] introduce a syntax and an operational semantics
for speculative execution for reliability and fault tolerance. This
work proves that the speculative execution model is equivalent to
the non-speculative model. Weaver et al. [40] and Vijaykumar et
al. [35] use program behavior to direct transient fault detection.
These techniques follow the propagation of faults through the pro-
gram to reduce unnecessary replication. RAFT achieves the same
goal by only detecting non-benign faults when they are about to
affect program output. Gaiswinkler et al. [12] use the compiler to
generate diverse binaries for a program, thus detecting a majority
of faults that affect register values. However, this technique has a
lower fault coverage than RAFT, and may produce false-positives.
Aidemark et al. [1] propose methods to detect software errors by
executing an application multiple times and majority voting.

Lee et al. propose Respec, an online multiprocessor replay tech-
nique using speculative logging for externally deterministic replay
[16]. This technique optimistically logs less information about
shared memory dependencies than needed for deterministic replay.
If the replayed process diverges from recorded process, misspec-
ulation recovery is performed. This paper and Respec follow the
same idea that only externally visible behavior and final state of
the program must be correct. Respec was introduced to replay
externally visible behavior of shared memory multithreaded pro-
grams on commodity multiprocessor architecture. Similarly, RAFT
can also be extended to provide transient fault detection for multi-
threaded programs with deterministic externally visible behavior.

Daniel et al. [10] explore the possibility of using process monitor-
ing utilities of Unix systems for fault tolerance on cluster platforms
with NFS. Process monitoring utilities are also exploited for re-
lated research topics, such as fault injection and program security
checking [32, 15, 9, 14, 38]. Jarboui et al. present a software-
implemented fault injection technique to identify different tech-
niques for generating different software faults for operating sys-
tems [14]. In this work, they use the UNIX ptrace function to
trap kernel calls issued by the process where the faults are being



injected. Sieh implements a fault injector using the UNIX ptrace
process monitoring interface that can inject transient faults into
most of the CPU registers, FPU and FPA registers, and into the
virtual address space of the running process [32].

FERRARI [15] uses the UNIX ptrace function to corrupt the
memory image of a process at runtime. The ptrace function is
used to insert software trap instructions at the specific instruction
address where a fault is to be injected. FERRARI can inject faults
into the data and code segments of a running process as well as the
registers and part of the main memory used by that process. It can
also intercept the system calls made by the running process, and
change their return values. Buchacker et al. develop a framework
for testing the fault-tolerance of systems, where they inject faults
into a simulated system of Linux machines using the ptrace in-
terface [9]. This paper uses similar methods to inject faults into reg-
ister files and main memory to study the fault coverage of RAFT.

6. CONCLUSION
Architectural trends toward smaller transistors, higher transistor
counts, and lower core voltage make transient faults a more critical
reliability concern than ever. Redundant hardware provides tran-
sient fault detection at the cost of additional chip area and design
cost. Software redundancy is more appealing for its flexibility and
low cost. However, even the best available software techniques for
transient fault detection have large performance overhead. This pa-
per presents Runtime Asynchronous Fault Tolerance via Specula-
tion (RAFT), the fastest software fault detection technique to date.
Combining OS-level process monitoring, value speculation, and ef-
ficient misspeculation recovery, RAFT provides transient fault tol-
erance with only 2.83% runtime overhead. With the flexibility of
software and the low runtime overhead, RAFT provides a practical
transient fault protection scheme for modern multicore processors.
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