
Dynamically Managed Data for CPU-GPU Architectures

Thomas B. Jablin James A. Jablin† Prakash Prabhu Feng Liu David I. August

Princeton University, Princeton, New Jersey, USA
†Brown University, Providence, Rhode Island, USA

ABSTRACT
GPUs are flexible parallel processors capable of accelerating
real applications. To exploit them, programmers must ensure
a consistent program state between the CPU and GPU mem-
ories by managing data. Manually managing data is tedious
and error-prone. In prior work on automatic CPU-GPU data
management, alias analysis quality limits performance, and
type-inference quality limits applicability. This paper presents
Dynamically Managed Data (DyManD), the first automatic sys-
tem to manage complex and recursive data-structures without
static analyses. By replacing static analyses with a dynamic
run-time system, DyManD overcomes the performance limita-
tions of alias analysis and enables management for complex
and recursive data-structures. DyManD-enabled GPU paral-
lelization matches the performance of prior work equipped with
perfectly precise alias analysis for 27 programs and demonstrates
improved applicability on programs not previously managed
automatically.

1. INTRODUCTION
Codes parallelized for GPUs routinely yield speedups between
4x and 100x for real applications [9, 15, 29]. Unfortunately, par-
allelizing code for GPUs is difficult because programmers must
explicitly ensure a consistent program state for data-structures
shared between CPU and GPU memories. To share data-
structures between CPU and GPU, programs must communi-
cate data between CPU and GPU memories. Managing data
means determining what data to communicate between CPU
and GPU memories to achieve a consistent program state. For
performance, communication should follow acyclic patterns,
since cyclic copying between CPU and GPU memories requires
frequent synchronization and places communication latency on
the program’s critical path. Optimizing communication means
replacing näıve cyclic communication patterns with efficient
acyclic ones.

Manually sharing data-structures between CPUs and GPUs
is tedious and error-prone. Semi-automatic techniques, such
as Global Memory for Accelerators (GMAC) [11], ease this

Copyright c© ACM, 2012. This is the author’s version of the work. It
is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in CGO, 2012,
http://doi.acm.org/10.1145/XXXXXX.

burden but require programmers to add annotations. Automat-
ically managing data and optimizing communication removes
the difficulty completely. Two automatic data management sys-
tems exist: Inspector-Executor (IE) [4, 22, 31] and CPU-GPU
Communication Management (CGCM) [16].

IE dynamically manages data but does not optimize commu-
nication. In IE, a compiler generates an inspector for each
parallelized code region. The inspector loads the data needed by
a parallelized region and transfers the data to the appropriate
memory space. Parallel executor functions use data sent by the
inspector. IE is intended for distributed memory clusters and is
unsuitable for GPUs because it cyclically copies data between
CPU and GPU memories for each GPU function. In prior
work, IE adapted to GPUs yields a whole program slowdown
compared to sequential CPU-only execution due to this frequent
cyclic communication [16].

CGCM is explicitly designed to manage data and optimize
communication for GPUs. To manage data, CGCM uses type-
inference to statically determine the types of data-structures.
Determining data-structures’ types is necessary since CGCM
handles pointer and non-pointer values differently. CGCM’s
static type-inference scheme characterizes data-structures as
either arrays of pointers or arrays of non-pointers. Consequently,
CGCM cannot automatically manage recursive data structures
or data-structures with pointer and non-pointer types. To op-
timize communication, CGCM uses alias analysis to disprove
cyclic dependencies between code on the CPU and code on the
GPU. Without cyclic dependencies, cyclic communication is no
longer necessary, so CGCM can safely optimize the program.
CGCM requires static analysis (type-inference and alias anal-
ysis) because it manages data and optimizes communication at
compile-time. The imprecision of static analysis limits CGCM’s
applicability and performance.

To address the limitations of IE and CGCM, we introduce
Dynamically Managed Data (DyManD). DyManD combines IE-
inspired dynamic analysis with CGCM-inspired efficient acyclic
communication patterns. DyManD matches CGCM’s perfor-
mance without requiring strong alias analysis and exceeds the
CGCM and IE’s applicability. DyManD creates the illusion
of a shared CPU-GPU memory, allowing DyManD to manage
complex and recursive data-structures which IE and CGCM
cannot. DyManD manages data automatically for both manual
and automatic parallelizations.

DyManD’s ability to manage and optimize recursive data-
structures is crucial, since many general purpose and scientific ap-
plications use recursive data-structures like trees, linked lists, and
graphs. The DOE, DARPA, and NSF believe next generation
science requires graphs and other complex data-structures [12].
GPU programmers typically avoid recursive data-structures due
to the difficulty of managing data and optimizing communica-
tion. By removing this difficulty, DyManD allows programmers
to choose data-structures based on the problem domain.

We evaluate how DyManD’s insensitivity to type inference and
alias analysis leads to improved applicability and performance.
To demonstrate alias analysis insensitivity, we compare Dy-
ManD’s performance with no alias analysis to CGCM’s equipped
with various alias analyses. The alias analyses tested with
CGCM include: no alias analysis, LLVM’s production-quality
alias analysis, a stack of three recently published research-grade
alias analysis, and perfect alias analysis supplied manually. Dy-
ManD exceeds CGCM’s performance with all automatic alias
analysis techniques and matches CGCM’s performance equipped
with human insight.

DyManD’s applicability improvements are evaluated by mea-
suring the performance of 27 programs. For three programs
CGCM and IE cannot manage, we perform detailed case-studies
comparing DyManD’s performance and ease of use with manual
communication. These case studies demonstrate that using
DyManD is significantly easier and less error prone than manual
data management. The results of the performance evaluation in-
dicate that DyManD is as efficient as manual data management.

DyManD’s contribution over prior work is that it is the first
fully-automatic CPU-GPU data management system to:

• support data-structures with pointer and non-pointer fields,

• support recursive data-structures,

• and be insensitive to alias analysis.

Section 2 motivates the need for dynamic CPU-GPU data man-
agement and optimization. Section 3 describes DyManD, the
proposed dynamic communication system. Section 4 evalu-
ates DyManD’s performance, using prior work as a baseline.
Section 5 surveys prior work, and Section 6 concludes.

2. MOTIVATION
To achieve performance on a CPU-GPU system, programs must
manage data and optimize communication efficiently. Manual
data management is difficult and error prone, and prior auto-
matic data management is limited to simple data-structures.
In this section, DyManD is motivated by comparison with two
prior automatic techniques, IE [4, 22, 31] and CGCM [16]. IE
does not optimize communication, so its performance on GPUs
is poor. CGCM requires strong alias analysis, but alias analysis
is undecidable in theory and imprecise in practice. Neither prior
automatic technique manages complex recursive data-structures.
DyManD efficiently manages complex data-structures without
the limitations of type-inference or alias analysis.

2.1 Prior Approaches to Data Management
Data management presents a major problem for GPU paral-
lelizations. The code in Listing 1 copies an array of strings to and
from GPU memory, allocating and freeing memory as necessary.

Listing 1: Manual explicit CPU-GPU memory management

char *h h array[M] = {
“The woods are lovely, dark and deep.”,
. . .

};

� global void kernel(unsigned i, char **d array);

void bar(unsigned N) {
/* Copy elements from array to the GPU */

� char *h d array[M];
� for(unsigned i = 0; i < M; ++i) {
� size t size = strlen(h h array[i]) + 1;
� cudaMalloc(h d array + i, size);
� cudaMemcpy(h d array[i], h h array[i], size,
� cudaMemcpyHostToDevice);
� }

/* Copy array to the GPU */
� char **d d array;
� cudaMalloc(&d d array, sizeof (h d array));
� cudaMemcpy(d d array, h d array, sizeof (h d array),
� cudaMemcpyHostToDevice);

� for(unsigned i = 0; i < N; ++i)
� kernel<<<30, 128>>>(i, d d array);

/* Free the array */
� cudaFree(d d array);

/* Copy the elements back, and free the GPU copies */
� for(unsigned i = 0; i < M; ++i) {
� size t size = strlen(h h array[i]) + 1;
� cudaMemcpy(h h array[i], h d array[i], size,
� cudaMemcpyDeviceToHost);
� cudaFree(h d array[i]);
� }

}

� Useful work � Communication � Kernel spawn

Almost every line of code in the example involves communica-
tion, not useful computation. The example code manages data
by copying data between CPU and GPU memories using mem-

cpy-style functions provided by the CUDA API [24]. Low-level
memcpy-style pointer manipulation is notoriously difficult for pro-
grammers. For real codes, the hazards of manually copying to the
GPU include subversive type casting, pointer aliasing, complex
data-structures, dynamic memory allocation, and pointer arith-
metic. In order to reduce errors and improve productivity, IE
and CGCM were introduced. Unfortunately, neither technique
can manage parallelized code using complex data-structures.

IE manages data for distributed memory systems but has been
adapted to CPU-GPU systems [16]. The inspector function
computes all addresses that will be accessed by the parallel
executor function. The inspector function must be side-effect
free; otherwise the executor function will start in the wrong
program state. Consequently, IE is only applicable to parallel
code regions with side-effect free address computation. Storing
pointers is a side-effecting operation that may affect address
computation, since a stored pointer may be loaded and used
in an address computation. Modifying array indices stored in
memory is forbidden in IE for the same reason.

CGCM is an automatic CPU-GPU data management and com-
munication optimization system. To manage data, CGCM
ensures that all live-in pointers to GPU functions are translated
to equivalent GPU pointers. For correctness, CGCM copies
data to the GPU at allocation unit granularity. An allocation
unit comprises all bytes reachable from a pointer by well-defined
pointer arithmetic. CGCM is only applicable to allocation units
consisting entirely of pointer or non-pointer values. For non-
pointer allocation units, CGCM copies the data to GPU memory
without modification, but for pointer allocation units, CGCM
iterates over the allocation unit, translating each CPU pointer
to a GPU pointer. CGCM uses static type-inference to enforce
this restriction due to C and C++’s subversive type casting.

CGCM automatically manages simple data-structures but has
several important limitations due to its reliance on address trans-
lation and type-inference. To avoid translating GPU pointers
back to CPU pointers, CGCM disallows storing pointers on the
GPU. CGCM’s simple type-inference is limited to scalar values,
pointers to scalar values, and pointers to pointers to scalar val-
ues. It cannot type structures with pointers and non-pointers,
higher-order pointers, or recursive data-structures. CGCM uses
type-inference to differentiate pointer and non-pointer allocation
units because it handles them differently. Even more sophisti-
cated type-inference would fail in C and C++ due to frequent
subversive type casting. Ideally, a data management system
should be applicable to general purpose data-structures and arbi-
trary GPU functions without relying on imprecise static analysis.

In the area of manual GPU data management, prior work pro-
poses several annotation-based systems [13, 19, 33, 34]. None of
these systems handle pointer arithmetic, aliasing inputs to GPU
functions, or pointer indirection. The annotation-based tech-
niques are limited to languages with strong type-systems [34],
managing named regions [13, 19], or affine memory accesses [33].

GMAC [11] is a semi-automatic approach to data management
and communication optimization. In GMAC, programmers an-
notate all heap allocations to indicate whether the allocated data
is GPU-accessible. For manually annotated heap allocations,
GMAC automatically generates efficient acyclic communication
patterns. However, GMAC cannot manage stack allocations or
global variables.

2.2 Prior Approaches to Communication Op-
timization

Acyclic CPU-GPU communication patterns are much more ef-
ficient than cyclic ones. Figure 1 shows an example program’s
execution schedule using cyclic and acyclic communication. For
cyclic communication, communication latency is on the pro-
gram’s critical path, and the program achieves limited paral-
lelism between CPU and GPU execution. By contrast, the
acyclic communication pattern keeps communication latency off
the program’s critical path and allows parallel CPU and GPU
execution.

To avoid cyclic communication, CGCM was introduced. Instead
of copying data between CPU and GPU memories once per
GPU function invocation, CGCM’s communication optimization
transfers data only once per program region. If a data-structure
is not accessed by the CPU, CGCM copies it to GPU memory at
the beginning of the code region and returns it to CPU memory

������ �������

��	
 ����� ��	
 �����

�	��������� ���������
��� ������������

�
����

�����	�����

�����������������
���

�
��
�

�
����

�
���

�
���!

�
���"

�
���#

�
����

�
����

�
���

�
���!

�
���"

�
���#

Figure 1: Execution schedules for cyclic and acyclic
communication patterns (Iter : Iteration)

at the end. CGCM uses static alias analysis to prove that the
CPU will not access data-structures for the duration of a region.

Alias analysis quality strongly affects CGCM’s ability to optimize
CPU-GPU communication. Precise alias analysis is difficult to
achieve in production compilers and remains an ongoing topic
of research. CGCM’s initial evaluation used a customized alias
analysis suite developed in tandem with CGCM. Consequently,
the CGCM alias analysis gives precise results for the programs
in the CGCM paper.

2.3 Relation of Prior Work to DyManD
Table 1 summarizes the differences between prior annotation-
based manual data management systems, IE, CGCM, and Dy-
ManD. DyManD avoids the limitations of IE and CGCM by
replacing static compile-time analysis with a dynamic run-time
library. Static type-inference is unnecessary for DyManD since
it does not translate CPU pointers to GPU pointers. By re-
placing standard allocation functions and modifying the GPU
code generation, DyManD ensures that every allocation unit on
the CPU has a corresponding allocation unit on the GPU at
the same numerical address. Consequently, pointers copied to
GPU memory point to equivalent allocation units in GPU mem-
ory without any translation. By avoiding pointer translation,
DyManD removes the need for static type-inference.

DyManD dynamically optimizes communication, avoiding the
need for static alias analysis. DyManD uses the page protection
system to optimize communication by transferring data from
GPU to CPU memory only when needed. To determine when
a page is needed on the CPU, DyManD removes read and write
privileges from the allocation units in CPU memory after copy-
ing them to GPU memory. If the CPU accesses the pages later,
the program will fault, and DyManD will transfer the affected
allocation units back to CPU memory, mark the pages readable

Framework
Data

Management
Comm.
Opti.

Requires Applicability

Annot. TI AA
CPU- Aliasing Pointer Max Stored
GPU Pointers Arithmetic Indirection Pointers

JCUDA [34] Annotat. × Yes No No X × × ∞ ×
Named Regions [13, 19] Annotat. × Yes No No X × × 1 ×
Affine [33] Annotat. Annotat. Yes No No X × × 1 ×
IE [4, 22, 31] Dynamic × Yes No No × × × 1 ×
CGCM [16] Static Static No Yes Yes X X X 2 ×
GMAC [11] Annotat. Dynamic Yes No No X X X ∞ X

DyManD Dynamic Dynamic No No No X X X ∞ X

Table 1: Comparison between communication optimization and management systems (Annot: Annotation, TI:
Type-Inference, AA: Alias Analysis)

and writable, and continue execution. Cyclic communication
is very infrequent in DyManD since data moves from GPU to
CPU only if it is needed.

DyManD’s communication optimization system is somewhat
similar to software distributed shared memory (SDSM) [21] spe-
cialized for two nodes (the CPU and GPU). However, SDSMs
rely on exception handling on all nodes to copy data on-demand.
This scheme is unworkable on GPUs for two reasons. First,
GPUs lack robust exception handling; the GPU equivalent of
a segmentation fault kills all threads and puts GPU memory
into an undefined state. Second, GPUs are presently unable to
initiate copies from CPU memory. Consequently, DyManD con-
servatively copies data to GPU memory that may be accessed
on the GPU, but copies data to CPU memory that will be
accessed on the CPU. GMAC [11] also uses exception handling
to optimize communication.

3. DESIGN AND IMPLEMENTATION
The DyManD data management and communication optimiza-
tion system consists of three parts: a memory allocation system,
a run-time library, and compiler passes. The memory allocation
system ensures that addresses of equivalent allocation units on
the CPU and GPU are equal, relieving the run-time system of
the burden of translation. The run-time system dynamically
manages data and optimizes communication. The compiler in-
serts calls to the memory allocation system and to the run-time
library into the original program, and it generates DyManD
compliant assembly code for the GPU. Table 2 summarizes
DyManD’s memory allocation and run-time library interface.
The remainder of the section will discuss the design and im-
plementation of DyManD’s memory allocator, run-time library,
and compiler passes.

3.1 Memory Allocation
DyManD’s memory allocation system keeps CPU and GPU
versions of equivalent allocation units at numerically equivalent
addresses in CPU and GPU memories. Using CPU addresses
on the GPU without translation allows DyManD to avoid the
applicability limitations of CGCM and IE. Address transla-
tion prevents prior work from managing data-structures with
pointer and non-pointer fields and from managing data for GPU
functions which store pointers.

The foundation of DyManD’s memory allocation system is the
blockAlloc function. The blockAlloc function (algorithm 2)
allocates two blocks of memory, one on the CPU and a second

Algorithm 2: Pseudo-code for blockAlloc

Require: size is a multiple of page size
Ensure: Returns the address of equivalent

allocation units in CPU and GPU memory
devptr← cuMemAlloc(size)
addr← devptr |MapMask
mmap(addr, size,MAP FIXED)
return addr

on the GPU. The two blocks have the same size and address.
Presently, there is no way to allocate memory at fixed GPU
addresses. Therefore, blockAlloc first allocates GPU memory
normally and then uses mmap to map a numerically equivalent
address in CPU memory.

DyManD uses bitmasks to ensure that GPU allocations do not
overlap with programs’ static memory allocations. Static alloca-
tions start at low addresses so blockAlloc sets a high address
bit to avoid overlapping static and dynamic allocations. A bit-
wise mask operation before each GPU memory access recovers
the original GPU pointer. DyManD modifies code generation for
the GPU to emit masking operations before load or store oper-
ations. When a pointer is compared or stored, the high bits are
preserved. Consequently, storing and comparing pointers yields
identical results on the CPU and GPU. From the programmer’s
perspective, addresses on the CPU and GPU are identical.

Allocation units come from dynamic allocations, from global
variables, and from the stack. DyManD uses different techniques
to manage allocation units depending on their source.

• For dynamic allocations, DyManD provides a customized
version of malloc, calloc, and realloc based on
blockAlloc. This implementation is similar to mmap-based
malloc implementations [5, 23]. DyManD tracks all dy-
namic memory allocations.

• To manage global variables, a DyManD compiler pass re-
places all global variables with equivalently sized dynamic
allocations. To maintain program semantics, DyManD al-
locates memory for global variables and copies any initial
values before executing the main function.

Function prototype Description

blockAlloc(size) Allocate a block of memory at numerically equivalent addresses on the CPU and GPU.

cuMemAlloc(size) CUDA driver API for allocating aligned memory on the GPU.

map(ptr) Indicates ptr and any values it points to recursively may be used on the GPU.

launch(gpuFunc) Launch a function on the GPU, copying data from CPU to GPU if necessary.

dymandExceptionHandler(addr)
Called when the CPU tries to access an allocation unit in GPU memory, copies the
allocation unit to CPU memory.

Table 2: DyManD’s run-time library and related functions from the CUDA driver API

����������	

��� �����	

����

������������

������

��������

�����

���������

��������

���	���
��������

�����
����

Figure 2: DyManD’s state transition diagram for
allocation units. The solid lines indicate transitions
necessary for correctness. The dashed transitions im-
prove performance heuristically, but are not necessary.

• To manage stack allocations, a DyManD compiler pass re-
places all escaping stack variables with dynamic allocations.
The compiler pass ensures the dynamic allocations have the
same scope and size as the original stack allocations. In
general escape analysis is undecidable, but in practice for
stack variables, it is easily decidable.

3.2 Run-Time Library
DyManD’s run-time library manages data and optimizes com-
munication. For each allocation unit, the run-time maintains an
ordered map from the base address to the size and state. The
map can be used to determine if a pointer-sized value points
within an allocation unit. The three states of an allocation unit
are: CPU Exclusive (CPUEx), Shared, and GPU Exclusive
(GPUEx). Allocation units in the Shared state may be accessed
on the CPU but will become GPUEx on the next GPU function
invocation. Figure 2 shows the state diagram for allocation units.

CPUEx to Shared via map. All allocation units begin in the
CPUEx state. In the CPUEx state, the CPU has exclusive
access to the allocation unit. The map function (Algorithm 3)
changes the state of CPUEx allocation units to Shared but does
not copy the allocation unit to the GPU. The Shared state
signifies that a specific allocation unit and any other allocation
units it points to recursively should be copied to the GPU before
invoking the next GPU function.

Algorithm 3: Pseudo-code for map

Require: ptr is a pointer sized value
Ensure: If ptr points to an allocation unit, mark all CPUEx

allocation units sharing a page with ptr Shared
if ¬isPointer(ptr) then

return

basePtr← getBase(ptr)
forall
the base ∈ getTransitiveClosure(basePtr, sharesPage) do

if getState(base) = CPUEx then
setState(base,Shared)
push(sharedAllocs,base)

Algorithm 4: Pseudo-code for launch

Require: gpuFunc is a GPU function
Ensure: All Shared allocation units become GPU exclusive
while ¬empty(sharedAllocs) do

base← pop(sharedAllocs)
size← getSize(base)
cuMemCopyHtoD(base,base, size)
setState(base,GPUEx)
foreach value ∈ loadAllValues(base,base + size) do

if isPointer(value)∧ getState(value) 6= GPUEx then
map(value)

mprotect(base, size,PROT NONE)

gpuFunc()

Shared to GPUEx via launch. The run-time library’s launch

function (Algorithm 4) intercepts calls to GPU functions and
copies data to the GPU. The launch function selects a Shared
allocation unit, copies it to GPU memory, and marks it GPUEx.
After marking the allocation unit, launch scans the allocation
unit for values that may be pointers. When a pointer is found,
launch calls map with the new pointer and marks it Shared if
it is not already. This is conservative, since non-pointer values
that happen to point to valid addresses will cause unnecessary
copying. Finally, launch calls mprotect to remove read and
write permissions from the allocation unit’s pages. Protecting
pages prevents the CPU from accessing data in the GPUEx
state. When no Shared allocation units remain, the GPU will
have up-to-date versions of all allocation units it may access.

Algorithm 5: Pseudo-code for the exception handler which
transfers allocation units back to the CPU on segmentation
faults.
Require: ptr is the faulting address
Ensure: If ptr points to

an allocation unit on the GPU, return it to the CPU
if ¬isPointer(ptr)∨ getState(ptr) 6= GPUEx then

defaultSignalHandler()
return

basePtr← getBase(ptr)
forall
the base ∈ getTransitiveClosure(basePtr, sharesPage) do

size← getSize(base)
mprotect(base, size,PROT READ | PROT WRITE)
cuMemcpyDtoH(base,base, size)
setState(base,Shared)

GPUEx to Shared via segfault handler. The run-time li-
brary installs an exception handler (Algorithm 5) to detect
accesses to pages in the GPUEx state. Touching any byte in a
protected allocation unit triggers an exception. The exception
handler copies the allocation unit back to CPU memory. For
each allocation unit sharing a page with the faulting allocation
unit, the exception handler restores read and write permissions,
updates CPU memory, and marks the pages as Shared. Dy-
ManD preserves POSIX [25] semantics for access violations.
When an access violation occurs to an address not protected by
the run-time system, DyManD invokes the program’s default
exception handler.

The DyManD run-time system manages data and optimizes
communication for complex recursive data-structures. The recur-
sive nature of launch allows DyManD to successfully manage
recursive data-structures with pointer and non-pointer fields.
Additionally, the system naturally handles mapping the same
allocation unit multiple times. If an allocation unit is live-in
to a GPU function through multiple sources, it will only be
transferred to the GPU once. By transferring data-structures
from GPU to CPU memory only when necessary, the exception
handler ensures a mostly acyclic communication pattern.

Shared and GPUEx to CPUEx via ping-pong heuristic.
DyManD has one additional state transition to improve perfor-
mance by returning Shared data to the CPUEx state when it
is no longer needed by the GPU. Sometimes a value enters the
Shared state early in a program, and later the value is accessed
on the CPU between two calls to GPU functions. In this case,
the value will ping-pong between CPU and GPU memories even
though it is never used on the GPU. To avoid this problem,
DyManD needs a way to restore Shared allocation units to the
CPUEx state. It is unsound to mark one Shared allocation
unit CPUEx since the GPU may still have a pointer to it. How-
ever, it is safe to transfer all allocation units off the GPU at
once, restoring all allocation units to the CPUEx state. When
ping-ponging is detected, the run-time library copies all GPUEx
and Shared values back to the CPU, restores their read and
write permissions, and marks them CPUEx. In practice, this
heuristic resolves ping-ponging. If the run-time library detects
that ping-ponging persists after intervening, it will not intervene

again. This optimization improves the whole-program speedup
of the srad program from 0.76x to 6.73x.

DyManD suffers from ping-ponging due to false sharing when
allocation units frequently used on the GPU share a page with
allocation units frequently used on the CPU. To avoid ping-
ponging due to false sharing, the memory allocator uses three
heuristics to arrange allocation units in memory. First, allo-
cation units smaller than a page should never span a page
boundary because this would force both pages to change state
together. Second, allocation units larger than a page are always
page aligned to prevent multiple large allocation units from
transitioning together unnecessarily. Finally, allocation units
are segregated by size since allocation units with a common size
tend to transition from CPU to GPU memory as a group. For
example, all the nodes of a binary tree will transition at once.
Allocating them to the same page will not decrease performance.

3.3 Compiler Passes
The DyManD compiler’s input is a program with CPU and
GPU functions but without data management. For each GPU
function, a DyManD compiler pass determines all live-in values.
A value is live-in to a GPU function if it is passed to the GPU
function as an argument or if it is a global variable used by the
GPU function or its callees. For each live-in value, the compiler
pass inserts a call to DyManD’s map function.

DyManD uses two compiler passes to create opportunities for
dynamic communication optimization: alloca promotion and
glue kernels. Both optimization techniques were initially used
in CGCM [16].

Alloca promotion increases the scope of stack allocated values to
improve optimization scope. Occasionally, programs will execute
a loop in parallel on the GPU but allocate the loop’s scratchpad
arrays in CPU memory. Communication optimization fails since
the stack allocated array falls out of scope between GPU func-
tion invocations. To remedy this situation, alloca promotion
pre-allocates stack allocated arrays of predictable size, increasing
their scope and allowing communication optimization.

Glue kernels prevent small sequential code regions from inducing
cyclic communication. Sometimes a small sequential code region
between two GPU functions uses an allocation unit that is on the
GPU. The performance impact of the sequential code is trivial,
but running it on the CPU induces cyclic communication which
decreases performance. The glue kernel optimization transforms
small sequential code regions into single threaded GPU func-
tions. Surprisingly, the performance benefit of reduced cyclic
communication outweighs the cost of single threaded execution
on the GPU.

4. EVALUATION
DyManD is insensitive to alias analysis quality and more applica-
ble than prior systems. To demonstrate DyManD’s insensitivity
to alias analysis, we compare the performance of DyManD and
CGCM on a selection of 27 programs including all 24 programs
in CGCM’s original evaluation. Since these programs are already
applicable to CGCM, they cannot demonstrate DyManD’s ap-
plicability improvements. Therefore, we manually parallelize
three programs with recursive data-structures and compare the
performance of manual data management and communication
optimizations with DyManD’s automatic data management.

To highlight CGCM’s sensitivity to alias analysis quality, CGCM’s
performance is evaluated with no alias analysis, LLVM’s produc-
tion alias analysis [17], an alias analysis stack of three research-
grade analyses [14, 18, 20], and perfect alias analysis performed
manually.

The research-grade alias analysis stack consists of three analyses
that are state-of-the-art in terms of both precision and scalability.
These analyses are:

• Hardekopf and Lin’s semi-sparse flow sensitive pointer anal-
ysis [14] is inclusion-based, context insensitive, field sensitive,
and flow sensitive.

• Lhoták and Chung’s points-to analysis [20] is context in-
sensitive, semi-flow sensitive, and supports efficient strong
updates.

• Lattner et al.’s pointer analysis [18] is unification based, con-
text sensitive, flow insensitive, and supports heap cloning.

4.1 Experimental Platform
The performance baseline is an Intel Core 2 Quad clocked at
2.40 GHz with 4 MB of L2 cache. The Core 2 Quad is also the
host CPU for the GPU. All GPU parallelizations were executed
on an NVIDIA GeForce GTX 480 video card, a CUDA 2.0
device clocked at 1.40 GHz with 1,536 MB of global memory.
The GTX 480 has 15 streaming multiprocessors with 32 CUDA
cores each for a total of 480 cores. The CUDA driver version is
4.0 release candidate 2. Both CGCM and DyManD are tuned
for best performance on this reference platform.

The parallel GPU version is always compared with the original
single threaded C or C++ implementation running on the CPU.
All figures show whole program speedups, not kernel or loop
speedups. For the automatic parallelizations, no programs are
altered manually.

The sequential baseline compilations are performed by the clang
compiler version 3.0 (trunk 130127) at optimization level three.
The clang compiler produced SSE vectorized code for the se-
quential CPU-only compilation. The clang compiler does not
use automatic parallelization techniques beyond vectorization.
The nvcc compiler release 4.0, V0.2.1221 compiled all CUDA
C and CUDA C++ programs using optimization level three.

We use the same performance flags for all programs; no pro-
grams receive special compilation flags. The optimizer runs the
same passes with the same parameters in the same order for
every program. A simple DOALL GPU parallelization system
coupled with an open source PTX backend [28] performed all
automatic parallelizations.

4.2 Program Suites
We use different sets of programs to show DyManD’s improved
applicability and insensitivity to alias analysis relative to CGCM.
To evaluate DyManD’s performance on recursive data-structures,
we compare DyManD with manual data management on man-
ual parallelizations. We select three programs from the Olden
benchmark suite [7] based on suitability for GPU parallelization
and manually parallelized them using best practices. The Olden
suite consists entirely of programs with recursive data-structures
considered difficult to parallelize. The other programs in the
suite were discarded because no suitable GPU parallelization

0.25x

0.5x

1x

2x

4x

8x

16x

32x

64x

128x

treeadd em3d bh geomean

W
h
o
le

 P
ro

g
ra

m
 S

p
ee

d
u
p
 (

L
o
g

2
)

Manual
DyManD

Figure 3: Whole program speedup over sequential
CPU-only execution for manual parallelizations with
manual and DyManD data management and com-
munication optimization for programs with recursive
data-structures.

could be found. Figure 3 shows the performance results for the
selected Olden programs.

The alias analysis experiments consist of 27 programs drawn from
the PolyBench [26], Rodinia [8], StreamIt [32], and PARSEC [6]
benchmark suites. The 27 programs consist of all 24 programs
in CGCM’s original evaluation as well as three new programs
selected from the same suites (backprop, heartwall, and fil-

terbank). The PolyBench, Rodinia, and StreamIt suites have
very few complex or recursive data-structures because the suites
were designed for evaluating parallel compilers, architectures,
and languages respectively.

PolyBench [2, 10] is a suite composed of 16 programs designed
to evaluate implementations of the polyhedral model of DOALL
parallelism in automatic parallelizing compilers. Prior work
demonstrates that kernel-type micro-benchmarks do not re-
quire communication optimization since they invoke a single
hot loop once. The jacobi-2d-imper, gemm, and seidel pro-
grams have been popular targets for evaluating automatic GPU
parallelization systems [3, 19]. Figure 4 shows performance
results for the entire PolyBench suite.

The Rodinia suite consists of 12 programs with CPU and GPU
implementations. The CPU implementations contain OpenMP
pragmas, but the DOALL parallelizer ignores them. PARSEC
consists of OpenMP parallelized programs for shared memory
systems. The StreamIt suite features pairs of applications writ-
ten in C and the StreamIt parallel programming language. Our
simple DOALL parallelizer found opportunities in eight of the
12 Rodinia programs and from three selected programs from
PARSEC and StreamIt suites. The 11 applications from Ro-
dinia, StreamIt, and PARSEC are larger and more realistic than
the PolyBench programs.

4.3 Applicability Results and Analysis
Figure 3 shows whole program speedup over sequential CPU-
only execution for three manually parallelized Olden programs

0.25x

0.5x

1x

2x

4x

8x

16x

32x

64x

128x

2
m

3
m

m

ad
i

atax

b
icg

co
rrelatio

n

co
v
arian

ce

d
o
itg

en

g
em

m

g
em

v
er

g
esu

m
v

g
ram

sch
m

id
t

jaco
b
i-2

d
-im

p
er

lu lu
d
cm

p

seid
el

b
ack

p
ro

p

cfd

h
eartw

all

h
o
tsp

o
t

k
m

ean
s

lu
d

n
w

srad

b
lack

sch
o
les

filterb
an

k

fm g
eo

m
ean

g
eo

m
ean

 (m
in

 1
x
)

PolyBench Rodinia Other
W

h
o
le

 P
ro

g
ra

m
 S

p
ee

d
u
p
 (

L
o
g

2
)

CGCM No-AA
CGCM LLVM-AA

CGCM Research-AA
CGCM Perfect-AA

DyManD No-AA

Figure 4: Whole program speedup over sequential CPU-only execution for CGCM with LLVM alias analysis,
CGCM with custom alias analysis, and DyManD with no alias analysis.

using manual data management or DyManD. Across all three
benchmarks, manual data management did not confer a substan-
tial performance advantage and was significantly more difficult
to implement than automatic data management.

The treeadd program has the simplest data-structure, an un-
sorted binary tree implemented as a recursive data-structure.
CGCM is inapplicable to treeadd because it contains a recur-
sive data-structure and structures with pointer and non-pointer
elements. In order to manage data, the programmer made a tem-
porary copy of each node in the tree, replaced the copy’s pointers
with GPU pointers, transferred the copy to GPU memory, and
freed the copy. The use of a temporary copy is unnecessary with
DyManD because in DyManD, CPU and GPU pointers are
equivalent. DyManD manages data by adding a call to map for
the root of the binary tree before invoking the GPU function.

The em3d program uses two linked-lists to implement a many-
to-many bipartite graph. Each node in the first linked-list
contains an array of pointers to the second linked-list and vice-
versa. Manual data management is somewhat more complicated
than treeadd since identical pointers appear many times in the
data-structure. To ensure each pointer is translated consistently,
the programmer uses a map between CPU and GPU pointers.
The manual data management performs a depth-first traversal
starting from both roots of the bipartite graph. For each node
in the graph, the programmer updates the map, uses the map
to translate pointers in a temporary copy, transfers the copy to
the GPU, and frees the copy. To manage data, DyManD inserts
two calls to map, one for each root of the bipartite graph.

The bh program emulates Java-style object inheritance in C
using careful data-structure layout and abundant casting. Al-
though all subclasses are recursive data-structures, each subclass
features different numbers and types of pointers at different struc-
ture offsets. In addition to the temporary copy and CPU to
GPU pointer map used for em3d, the programmer must down-
cast abstract types to the appropriate subclasses. Manual data
management requires the programmer to write custom code
to translate each subclass. DyManD manages data by adding
three calls to map before invoking the GPU function.

Surprisingly, in bh DyManD outperforms manual data man-
agement, even though both implementations transfer the same
number of bytes in the same number of copies and use identical
kernels. The performance difference is due to pointer translation.
The programmer uses a temporary CPU copy to translate point-
ers, but DyManD does do not translate pointers. Ordinarily,
the cost of the extra copy would be trivial, but the parallelized
region is so much faster than the original sequential code that
data management becomes a performance bottleneck.

4.4 Insensitivity Results and Analysis
Figure 4 shows whole program speedup over sequential CPU-
only execution between DyManD and CGCM with no alias
analysis, LLVM’s production alias analysis, research-grade alias
analysis, and perfect manual alias analysis. The figure’s y-axis
starts at 0.25x although some programs have lower speedups.
Overall, DyManD’s performance without alias analysis matches
or exceeds CGCM’s performance with production grade or re-
search quality alias analysis.

For the PolyBench programs (2mm through seidel), the results
indicate that the performance overhead of DyManD is compa-
rable to CGCM even though DyManD has a more complex
run-time library. Differences in performance between DyManD
and CGCM are usually due to the run-time overhead and not
communication optimization because PolyBench has very few
communication optimization opportunities. Most PolyBench
programs consist of a single large GPU function that executes
exactly once. Additionally, since the PolyBench programs do not
dynamically allocate memory, very simple alias analysis can be
precise. Consequently, the performance of DyManD and CGCM
on the PolyBench suite is similar even with weak alias analysis.

The Rodinia, StreamIt, and PARSEC programs show more per-
formance variability since these applications are more complex
and require communication optimization for best performance.
For these applications DyManD almost always performs better
than CGCM with automatic alias analysis. Surprisingly, the
research grade alias analysis system is not significantly superior
to LLVM’s production alias analysis system. LLVM’s alias anal-
ysis was sufficient to optimize communication for nw and srad;
the research alias analysis was not. The situation is reversed for

blackscholes where LLVM’s alias analysis is worse than the
research grade implementation.

Across all the benchmarks, CGCM with perfect alias analysis
outperforms DyManD very slightly. This reflects CGCM’s lower
run-time overhead. However, real compilers do not have perfect
alias analysis so DyManD performs better in practice. CGCM
may be practical for languages that require less complex alias
analysis such as FORTRAN or when programmer aliasing anno-
tations are present. Nevertheless, DyManD’s geomean overhead
is 6.61% of whole program execution.

For programs where CGCM and DyManD are both slower than
sequential execution, DyManD is almost always slower than
CGCM. DyManD and CGCM’s slowdowns are usually due to
necessary cyclic communication between the CPU and GPU.
DyManD and CGCM can only remove unnecessary cyclic com-
munication. In CGCM, the program will copy data between
CPU and GPU before and after every GPU function call. Dy-
ManD performs the same copies but must also frequently call
into the operating system to protect and unprotect pages. Con-
sequently, the performance penalty for cyclic communication is
higher for DyManD than for CGCM.

5. RELATED WORK
There are two techniques for managing data automatically:
IE [4, 22, 31] and CGCM [16]. IE systems manage data in
clusters with distributed memory by inspecting program access
patterns at run-time. Prior IE implementations are only appli-
cable to simple array-based data structures. Some IE systems
achieve acyclic communication when dependence information
is reusable [27, 30]. This condition is rare in practice.

CGCM is the first fully-automatic data management and com-
munication optimization system for GPUs. CGCM manages
data using a combined run-time compile-time system. CGCM
depends on compile-time type-inference to correctly transfer data
between CPU and GPU memories. The type-inference algorithm
limits CGCM’s applicability to simple array-based codes. Fur-
thermore, CGCM depends on alias analysis for optimization, so
the strength of alias analysis strongly affects overall performance.

DyManD does not require strong alias analysis for communica-
tion optimization and matches the performance of CGCM while
achieving greater applicability. In contrast to CGCM, DyManD
manages data and optimizes communication dynamically. For
production compilers, DyManD is a more practical target than
CGCM, since alias analysis is undecidable in theory and difficult
to implement precisely and efficiently in practice.

CUDA 4.0’s Unified Virtual Addressing (UVA) [24] also achieves
a unified address space between CPU and GPU memories but
has very different properties from DyManD. UVA allows pro-
grams to detect whether a value is a CPU pointer or a GPU
pointer at run-time but does not facilitate data management or
communication optimization. UVA distinguishes CPU pointers
from GPU pointers by ensuring no valid address on the GPU
is valid on the CPU and vice versa. By contrast, in DyManD,
numerically equivalent addresses refer to equal size allocation
units in CPU and GPU memories. From the perspective of the
programmer, the DyManD run-time system keeps the contents
of these allocation units identical.

Integrated GPUs, including CUDA and Fusion [1] devices, have
the same data management and communication optimization
problem as discrete devices. In most integrated GPUs, the CPU
and GPU share the same physical memory. However, CPU-GPU
communication still requires copying between memory allocated
to the CPU and memory allocated to the GPU. Pinning mem-
ory renders it accessible to both CPU and GPU, but pinned
memory has major limitations [24, 1]. Pinned memory is rel-
atively scarce and requires programmers or compilers to decide
which allocation units may be accessible on the GPU at allo-
cation time. Additionally, pinned-memory cannot be swapped
to disk so programs using pinned memory can adversely affect
other programs running on the same computer.

Several semi-automatic systems exist that manage data using
programmer annotations [11, 13, 19, 33, 34], but none han-
dle recursive data structures. “OpenMP to GPGPU” [19] and
hiCUDA [13] use annotations to automatically transfer arrays
to GPU memory. JCUDA [34] uses the Java type system
to transfer arrays to the GPU but requires the programmer
to annotate whether parameters are live-in, live-out, or both.
The PGI Fortran and C compiler [33] requires programmers to
use the C99 restrict keyword to provide aliasing information.
GMAC [11] requires annotations to manage specially marked
heap allocations. Of all the semi-automatic techniques, only
GMAC and the PGI accelerator optimize communication across
GPU function invocations. GMAC’s automatic communication
optimization uses a page-protection based system similar to
DyManD. For the PGI accelerator, optimizing communication
requires additional programmer annotations.

6. CONCLUSION
DyManD is the first dynamic data management and commu-
nication optimization system. By replacing static analysis with
a dynamic run-time system, DyManD avoids the performance
limitations of IE and CGCM. CGCM’s communication requires
strong alias analysis and is very sensitive to analysis precision.
By contrast, DyManD does not use alias analysis.

DyManD consists of a run-time library and a set of compiler
passes. The run-time library is responsible for managing data
and optimizing communication while the compiler is responsible
for code generation and creating optimization opportunities
for the run-time. The run-time library manages data without
requiring address translation since the DyManD memory allo-
cator keeps equivalent allocation units at numerically equivalent
addresses in CPU and GPU memories. The run-time dynam-
ically optimizes communication by using memory protections
to return allocation units to the CPU only when necessary. Dy-
ManD outperforms CGCM equipped with production-quality
and research grade alias analyses, achieving a whole program
geomean speedup of 4.21x over best sequential execution versus
geomean speedups of 2.35x and 1.28x, respectively, for CGCM.

7. ACKNOWLEDGMENTS
We thank the Liberty Research Group for their support and
feedback during this work. We also thank Helge Rhodin for
generously contributing his PTX backend. Finally, we thank the
anonymous reviewers for their insightful comments. This work
is supported by NSF Grants CCS-0964328 and OCI-1047879,
DARPA Contract FA8750-10-2-0253, USAF Contract FA8650-
09-C-7918, the DOE OS Graduate Fellowship, and a Google
Graduate Fellowship. All opinions, findings, conclusions, and

recommendations expressed throughout this paper are those of
the Liberty Research Group and do not necessarily reflect the
views of our supporters.

8. REFERENCES
[1] AMD. AMD Accelerated Parallel Processing, August 2011.
[2] C. Ancourt and F. Irigoin.

Scanning polyhedra with DO loops. In Proceedings
of the Third ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 1991.

[3] M. M. Baskaran, J. Ramanujam, and
P. Sadayappan. Automatic C-to-CUDA code generation
for affine programs. In Compiler Construction (CC), 2010.

[4] A. Basumallik and R. Eigenmann.
Optimizing irregular shared-memory applications
for distributed-memory systems. In Proceedings
of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2006.

[5] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wil-
son. Hoard: a scalable memory allocator for multithreaded
applications. SIGPLAN Not., 35:117–128, November 2000.

[6] C. Bienia, S. Kumar, J. P. Singh, and
K. Li. The PARSEC benchmark suite: characterization
and architectural implications. In Proceedings
of the 17th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2008.

[7] M. C. Carlisle and A. Rogers.
Software caching and computation migration in Olden.
In Proceedings of the fifth ACM SIGPLAN symposium on
Principles and practice of parallel programming, PPOPP
’95, pages 29–38, New York, NY, USA, 1995. ACM.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron. Rodinia: A benchmark
suite for heterogeneous computing. IEEE International
Symposium on Workload Characterization (IISWC), 2009.

[9] D. M. Dang, C. Christara, and K. Jackson. GPU pricing of
exotic cross-currency interest rate derivatives with a foreign
exchange volatility skew model. SSRN eLibrary, 2010.

[10] P. Feautrier. Some efficient solutions to the affine
scheduling problem: I. one-dimensional time. International
Journal of Parallel Programming (IJPP), 1992.

[11] I. Gelado, J. E. Stone, J. Cabezas,
S. Patel, N. Navarro, and W.-m. W. Hwu. An asymmetric
distributed shared memory model for heterogeneous
parallel systems. SIGPLAN Not., 45:347–358, March 2010.

[12] Graph
500 specifications. http://graph500.org/specifications.html.

[13] T. D. Han and T. S. Abdelrahman. hiCUDA: a
high-level directive-based language for GPU programming.
In Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, GPGPU-2,
pages 52–61, New York, NY, USA, 2009. ACM.

[14] B. Hardekopf and C. Lin.
Semi-sparse flow-sensitive pointer analysis. In Proceedings
of the 36th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL
’09, pages 226–238, New York, NY, USA, 2009. ACM.

[15] D. R. Horn, M. Houston, and P. Hanrahan. Clawhmmer:
A streaming HMMer-Search implementation. Proceedings
of the Conference on Supercomputing (SC), 2005.

[16] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson,
S. R. Beard, and D. I. August. Automatic CPU-GPU com-
munication management and optimization. In Proceedings
of the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 2011.

[17] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis & transformation.
In CGO ’04: Proceedings of the International Symposium
on Code Generation and Optimization, page 75,
Washington, DC, USA, 2004. IEEE Computer Society.

[18] C. Lattner, A. Lenharth,

and V. Adve. Making context-sensitive points-to
analysis with heap cloning practical for the real world.
In Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, PLDI
’07, pages 278–289, New York, NY, USA, 2007. ACM.

[19] S. Lee, S.-J. Min, and R. Eigenmann.
OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. In Proceedings of
the Fourteenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2009.

[20] O. Lhoták and K.-C. A.
Chung. Points-to analysis with efficient strong updates. In
Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
POPL ’11, pages 3–16, New York, NY, USA, 2011. ACM.

[21] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. In Proceedings of the fifth annual ACM
symposium on Principles of distributed computing, PODC
’86, pages 229–239, New York, NY, USA, 1986. ACM.

[22] S.-J. Min and R. Eigenmann.
Optimizing irregular shared-memory applications for
clusters. In Proceedings of the 22nd Annual International
Conference on Supercomputing (SC). ACM, 2008.

[23] O. Moerbeek.
A new malloc (3) for openbsd. In Proceedings of the
2009 European BSD Conference, EuroBSDCon ’09, 2009.

[24] NVIDIA Corporation.
NVIDIA CUDA Programming Guide 4, April 2011.

[25] POSIX.1-2008.
The open group base specifications. (7), 2008.

[26] L.-N. Pouchet.
PolyBench: the Polyhedral Benchmark suite. http://www-
roc.inria.fr/ pouchet/software/polybench/download.

[27] L. Rauchwerger, N. M. Amato, and D. A. Padua. A scalable
method for run-time loop parallelization. International
Journal of Parallel Programming (IJPP), 26:537–576, 1995.

[28] H. Rhodin. LLVM PTX Backend.
http://sourceforge.net/projects/llvmptxbackend.

[29] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi,
S. S. Stone, D. B. Kirk, and W.-m. W. Hwu. Optimization
principles and application performance evaluation
of a multithreaded GPU using CUDA. In Proceedings of
the Thirteenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2008.

[30] J. Saltz, R. Mirchandaney,
and R. Crowley. Run-time parallelization and scheduling
of loops. IEEE Transactions on Computers, 40, 1991.

[31] S. D. Sharma, R. Ponnusamy,
B. Moon, Y.-S. Hwang, R. Das, and J. Saltz. Run-time
and compile-time support for adaptive irregular problems.
In Proceedings of the Conference on Supercomputing
(SC). IEEE Computer Society Press, 1994.

[32] StreamIt
benchmarks. http://compiler.lcs.mit.edu/streamit.

[33] The Portland Group. PGI Fortran
& C Accelator Programming Model. White Paper, 2010.

[34] Y. Yan, M. Grossman,
and V. Sarkar. JCUDA: A programmer-friendly
interface for accelerating Java programs with
CUDA. In Proceedings of the 15th International Euro-Par
Conference on Parallel Processing. Springer-Verlag, 2009.

