
Automatic Speculative DOALL for Clusters

Hanjun Kim Nick P. Johnson Jae W. Lee† Scott A. Mahlke‡ David I. August

Princeton University, Princeton, NJ, USA
†SungKyunKwan University, Suwon, Korea

‡University of Michigan, Ann Arbor, MI, USA

ABSTRACT
Automatic parallelization for clusters is a promising alternative to
time-consuming, error-prone manual parallelization. However, au-
tomatic parallelization is frequently limited by the imprecision of
static analysis. Moreover, due to the inherent fragility ofstatic anal-
ysis, small changes to the source code can significantly undermine
performance. By replacing static analysis with speculation and pro-
filing, automatic parallelization becomes more robust and applica-
ble. A naïve automatic speculative parallelization does not scale for
distributed memory clusters, due to the high bandwidth required to
validate speculation. This work is the first automatic speculative
DOALL (Spec-DOALL) parallelization system for clusters. We
have implemented a prototype automatic parallelization system,
called Cluster Spec-DOALL, which consists of a Spec-DOALL
parallelizing compiler and a speculative runtime for clusters. Since
the compiler optimizes communication patterns, and the runtime
is optimized for the cases in which speculation succeeds, Cluster
Spec-DOALL minimizes the communication and validation over-
heads of the speculative runtime. Across 8 benchmarks, Cluster
Spec-DOALL achieves a geomean speedup of 43.8× on a 120-
core cluster, whereas DOALL without speculation achieves only
4.5× speedup. This demonstrates that speculation makes scalable
fully-automatic parallelization for clusters possible.

1. INTRODUCTION
Clusters of commodity servers and switches are the most popular
form of large-scale parallel computers to speed up the execution of
programs that require large computation power. While clusters pro-
vide scalable hardware resources such as processor cores, memory,
and I/O bandwidth, programs need to be parallelized to efficiently
utilize these parallel hardware resources. As a result, clusters are
primarily used for scientific programs or web services, which con-
sist of units of work that are mostly independent.

However, extracting scalable parallelism from sequentialprograms
on clusters is challenging for two main reasons. First, commodity
clusters do not provide shared memory. This requires the paral-
lelizer (programmer or compiler) to identify shared data and explic-
itly insert communication primitives between producers and con-
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sumers. Second, clusters have high inter-node communication la-
tency. Without careful communication optimization, the inter-node
communication cost easily becomes a performance bottleneck.

There are two main strategies for scalable, efficient parallelization
on clusters: parallel programming methods and automatic paral-
lelization methods. Explicit parallel programming using amessage
passing protocol (e.g., MPI) is one potential solution to the prob-
lem, but it can severely limit the programmer’s productivity by re-
quiring a deep knowledge of concurrency, domain expertise,and
platform-specific performance tuning. Parallelization APIs such as
Cluster OpenMP [7] can help programmers parallelize sequential
programs on clusters. As the programmers annotate what and how
to parallelize the sequential programs, the compiler generates par-
allel codes. However, the programmers still need to analyzethe
data and control dependences of the program to find effectivepar-
allelization strategies.

Automatic parallelization research has a rich history, especially in
the scientific computing community. Automatic parallelizing com-
pilers such as SUIF [1, 19] and Polaris [3] parallelize a sequential
program without programmer’s intervention. These compilers au-
tomatically find loops that can be parallelized using staticanaly-
ses, and transform the loops for parallel execution. However, their
applicability has been limited mostly to array-based scientific ap-
plications that have well-analyzable, regular data accesspatterns
mainly because of imprecise static analysis. Moreover, alias analy-
sis is too fragile to achieve stable performance with small changes
in the source code. More sophisticated, robust memory dependence
analysis can mitigate this problem, but there are still manyappli-
cations that are hard to parallelize automatically including those
with memory accesses through pointers or indirect arrays, inter-
procedural dependences, and so on.

Automatic speculative parallelization [11, 13, 16, 20, 25]can over-
come the limitations of static compiler analysis. These compil-
ers speculatively remove memory or control dependences among
instructions, and optimistically parallelize loops. However, these
proposals assume the availability of specialized hardwareor cache-
coherent shared memory, and their scalability has not been demon-
strated beyond 8 cores.

This paper is the first to demonstrate automatic speculativeDOALL
(Spec-DOALL) parallelization for clusters, addressing the prob-
lems of limited applicability and lack of performance stability. We
have implemented a prototype automatic parallelization system,
called Cluster Spec-DOALL, by combining a Spec-DOALL com-
piler with a speculative runtime system.



The Cluster Spec-DOALL compiler automatically identifies DOALL-
able or speculatively DOALL-able loops in a program via dynamic
profiling runs and static dependence analysis at compile-time. The
compiler speculatively removes data and control dependences that
prevent parallelization of the loops, guided by a set of profilers.
A code generator transforms the loop and inserts communication
primitives for flow dependences across parallel contexts. Acom-
munication optimizer aggressively promotes and batches commu-
nication calls in inner loops to reduce the amount of communica-
tion from worker processes to the validation and commit processes,
which easily become a performance bottleneck on clusters.

The parallelized programs are executed on top of the ClusterSpec-
DOALL runtime system. As the program is executed, the Cluster
Spec-DOALL runtime checks if misspeculation occurs. If a spec-
ulatively removed dependence manifests at run-time, the Cluster
Spec-DOALL runtime rolls back to a previous non-speculative pro-
gram state, executes the misspeculated iteration sequentially, and
resumes speculative parallel execution of the following iterations.

The primary contributions of this paper are:

• The first fully-automatic speculative parallelization system
targeting commodity clusters (called Cluster Spec-DOALL)

• Highly effective communication optimizations which reduce
the communication and validation overhead, enabling scal-
able performance for clusters

• An in-depth evaluation of Cluster Spec-DOALL on a 120-
core cluster using 13 benchmarks from PolyBench and PAR-
SEC benchmark suites

2. BACKGROUND AND MOTIVATION
Automatic parallelization has achieved limited success inparal-
lelizing sequential programs mainly because of imprecise and frag-
ile static analysis. Section 2.1 identifies the limitationsof con-
ventional analysis-based approaches to automatic parallelization.
Section 2.2 motivates speculative parallelization to overcome these
limitations and communication optimization to achieve scalable per-
formance.

2.1 Analysis-based Approaches in Automatic
Parallelization

Automatic parallelization is an ideal solution which freesprogram-
mers from difficulties of parallel programming and platform-specific
performance tuning. Parallelizing compilers can automatically par-
allelize affine loops [1, 3].Loop_A in Figure 1 shows such an
example code. If a compiler proves that all memory variablesin
the body of the functionfoo do not alias the arrayregular via
inter-procedural analysis, the loop is parallelized. Therefore, the
utility of an automatic parallelizing compiler is largely determined
by the quality of its memory dependence analysis.

In some cases, static analysis may be imprecise. For example,
within the functionfoo, assume that there is a read from or write
to the array elementregular[i+M], (and the size of the array
is greater than (M+N)), whereM is an input from the user. In this
case,Loop_A may not be DOALL-able depending on the value of
M. If M is greater thanN, the loop is DOALL-able; otherwise, it is
not. Some research compilers such as SUIF [1] and Polaris [3,18]
integrate low-cost run-time analysis capabilities to insert a small

 1: Loop_A: 
 2: for (int i=0; i<N; i++)  
 3:  regular[i] += foo(i); 
 4:  
  

 5: Loop_B: 
 6: for (int i=0; i<N; i++) { 
 7:   irregular[idx[i]] += foo(i); 
 8:   if (irregular[idx[i]] > error) 
 9:     printf(“I/O operation!”); 

10: } 
 

Figure 1: Sequential Code with Two Loops
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Figure 2: Performance sensitivity due to memory analysis ona
shared-memory machine

test code to check the value ofM at run-time to select either a se-
quential or parallel version of the loop accordingly. However, the
coverage of these techniques is mostly restricted to the cases when
a predicate can be extracted outside the analyzed loop and a low
cost run-time test can be generated [18]. They cannot be applied
to Loop_B in Figure 1, for example, where an index array is used
to access the arrayirregular and a simple predicate cannot be
extracted outside the loop to test theif condition within the loop
body.

Another issue with automatic parallelization is the fragility of static
analysis. Figure 2 illustrates how fragile static analysiscan be with
a small change in the program. In this example, the automaticpar-
allelizer can easily parallelize the unmodified PolyBench bench-
marks [15] using static arrays. However, if we replace the static
arrays with dynamically allocated arrays, it not only suppresses
some of the optimizations previously applied but also blocks paral-
lelization for several benchmarks since heap objects are generally
more difficult to analyze. This leads to run-time performance that
is highly sensitive to the implementation style.

Therefore, analysis-based approaches, both static and dynamic, are
not sufficient for parallelization of even array-based applications,
let alone pointer-based ones, having irregular memory accesses and
complex control flows. Moreover, recursive data structures, dy-
namic memory allocation, and frequent accesses to shared variables
pose additional challenges. Imprecise, fragile static analysis has
severely limited the applicability of conventional automatic paral-
lelization.

2.2 Spec-DOALL Parallelization on Clusters
A viable strategy to overcome the limitations of static analysis is
to exploit optimistic parallelism via data and control speculation.
For example, the compiler can apply Spec-DOALL parallelization
to Loop_B in Figure 1, speculating that no cross-iteration depen-
dence violation occurs via concurrent array accesses and that the
error condition in Line 8 does not happen at run-time. This ap-
proach requires runtime support for misspeculation detection and
recovery in either hardware or software to ensure correctness.



System Fully Supports Requires Targets Number of Cores
Automatic Spec-DOALL HW Support Clusters Used for Evaluation

Cluster OpenMP [7] No No No Yes -
SUIF [1] Yes No No Yes 32
Polaris [3, 18] Yes No No No 8, 16
POSH [11] Yes Yes Yes No 4
STMlite [13] Yes Yes No No 8
Cluster Spec-DOALL [This paper] Yes Yes No Yes 120

Table 1: Comparison of automatic parallelization systems

Runtime support for speculative parallelism has been an active area
of research, and there are a number of proposals including Transac-
tional Memories (TM) and Thread Level Speculation (TLS) mem-
ory systems. The runtime system tracks every speculative mem-
ory operation within a transaction or task (i.e., region of code ex-
ecuted speculatively) to determine if any atomicity violation (in
TM) or dependence violation (in TLS) occurs at commit time. Pro-
posals for TM or TLS memory systems can be divided into two
classes: hardware-based approaches [21, 24, 23] and software-only
approaches [4, 6, 8, 9, 12, 13, 14, 17, 22]. Software-only ap-
proaches can be further divided depending on whether they require
cache-coherent shared memory or not. Most existing proposals for
software-only speculative runtimes target only small-scale shared-
memory computers with tens of cores at most [13, 14, 17, 22].

There are research compilers which parallelize applications using
speculation [11, 13, 16, 25]. However, these compilers assume
the availability of specialized hardware or cache-coherent shared
memory, and their performance is evaluated using a small number
of cores (typically fewer than 8). Software transactional memory
systems have suffered from large validation overhead [5], conse-
quently they may not scale to a large number of cores. To achieve
scalable performance on a large number of cores, it is crucial to
optimize communication because the commit bandwidth easily be-
comes a performance bottleneck.

There have been proposals for TM and TLS memory systems on
clusters [4, 6, 8, 9, 12], but only Cluster-STM [4] and DSMTX [8]
have demonstrated their scalability on platforms with over100 cores.
In addition, among the proposals, there is no known automatic
speculative parallelization system targeting them. Cluster Spec-
DOALL is the first fully-automatic speculative parallelization sys-
tem that scales to hundreds of cores without requiring hardware
support or cache-coherent shared memory. Table 1 compares this
work with other existing automatic parallelization systems.

3. OVERVIEW OF Cluster Spec-DOALL
Figure 3 illustrates the overall structure of the Cluster Spec-DOALL
system. Cluster Spec-DOALL consists of a parallelizing compiler
including a set of profilers and a runtime supporting speculative
execution. The compiler finds and parallelizes DOALL-able or
Spec-DOALL-able loops by using both static alias analysis and dy-
namic profiling results. The runtime executes these parallelized
loops safely and efficiently on clusters.

3.1 Cluster Spec-DOALL Compiler
The Cluster Spec-DOALL compiler takes sequential C/C++ source
code as input to generate parallelized code targeting the Cluster
Spec-DOALL runtime. The compiler framework is composed of
the following components: dependence analyzer, DOALL paral-
lelizer, speculator, Spec-DOALL parallelizer and communication
optimizer. The rest of this section briefly explains the functional-
ity of each component, which will be discussed in greater detail in
Section 4.
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Figure 3: Overall Cluster Spec-DOALL System

Profilers: The profilers gather dynamic information by execut-
ing the sequential code with training input sets. More specifically,
Cluster Spec-DOALL uses three profiles: control flow profile,mem-
ory dependence profile and object lifetime profile. The speculator
uses these profiling results to target control and data speculation.

Dependence Analyzer:The dependence analyzer creates a pro-
gram dependence graph (PDG) via static analysis, which includes
both data and control dependences. Since the Cluster Spec-DOALL
runtime employs private memory space for each worker process,
loop-carried anti- and output-dependences are ignored in the paral-
lel region. Although the compiler exploits profiling information to
further refine the program dependence structure, better static anal-
ysis is always helpful to generate more efficient parallel codes with
fewer speculated dependences leading to lower validation cost.

DOALL Parallelizer: Whenever applicable, the compiler paral-
lelizes a loop without speculation using the classical DOALL trans-
formation. Specifically, loops without loop-carried dependence can
be parallelized with DOALL. The DOALL parallelizer adds calls
to the Cluster Spec-DOALL runtime for process management, and
live-in and live-out handling.

Speculator: When DOALL parallelization is not applicable, the
compiler uses profiling information to speculatively remove depen-
dence edges from the PDG. The refined PDG is calledSpec-PDG.
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The Spec-PDG is fed into the Spec-DOALL parallelizer for specu-
lative parallelization.

Spec-DOALL Parallelizer: If there is no loop-carried dependence
in the Spec-PDG, the Spec-DOALL parallelizer transforms the se-
quential loop for parallel execution as the DOALL parallelizer does.
Additionally, the Spec-DOALL parallelizer inserts runtime func-
tion calls to detect and recover misspeculated execution. It also
generates recovery code to re-execute a misspeculated iteration,
which is invoked after rolling back to the correct program state.

Communication Optimizer: It is important to reduce the amount
of communication since clusters have high communication cost.
For live-out and speculated memory accesses, the communication
optimizer aggressively attempts to hoist them out of inner loops by
promotion and batching.

3.2 Cluster Spec-DOALL Runtime
The parallelized loops with DOALL and Spec-DOALL are exe-
cuted on the Cluster Spec-DOALL runtime, which supports spec-
ulative memory accesses, misspeculation detection and recovery,
live-in and live-out handling, and process management. As adis-
tributed transactional memory system, the runtime validates mem-
ory speculation, and manages rollbacks in the event of misspecu-
lation. To efficiently pass live-in values on a cluster, the runtime
adopts copy-on-access [8]. Section 5 presents more detailsof the
runtime.

4. Cluster Spec-DOALL COMPILER
The Cluster Spec-DOALL compiler parallelizes sequential C/C++
source code with the following components: dependence analyzer,
DOALL parallelizer, speculator, Spec-DOALL parallelizer, recov-
ery code generator, and communication optimizer. This section de-
scribes each component in detail.

4.1 Speculator
The speculator removes dependence edges from the PDG that are
unlikely to manifest at run-time, to produce a Spec-PDG. Thethree
types of speculation supported by Cluster Spec-DOALL is guided
by three different profilers as follows:

Control Speculation: A profiler for control speculation collects
the traversal count of every edge in the control flow graph. For each
control flow edge, it computes the ratio of the number of timesthe
edge is taken to total loop iterations. When this ratio is smaller than
a static threshold, the speculator marks that edge asspeculated, and
all basic blocks which are dominated by that control flow edgeas
speculatively dead. Control speculation does not require any inter-
node communication except for misspeculation recovery, soClus-
ter Spec-DOALL preferentially applies control speculation over the
other forms of speculation.

Loop_A: 
// Master Process 

beginInvocation(DOALL); 
produceLiveIns(); 

consumeLiveOuts(); 

endInvocation(); 

 
// Worker Process 

beginInvocation(DOALL); 
consumeLiveIns(); 

for(int i=0; i<N; i++) { 

  if(i%NP==tid) { 
    regular[i]+=foo(i); 

    produce(&regular[i]); 
} } 

endInvocation(); 

 

Figure 6: DOALL (Loop_A)

Memory Flow Speculation: Memory flow speculation relies on a
memory profiler which observes the flow of values from stores to
loads. This information is stronger than alias informationbecause
two memory operations may alias even when there is no flow be-
tween them. The speculator identifies loop-carried memory flow
dependences which occur less frequently than a static threshold,
and marks them asspeculated. Inter-node communication must be
inserted to detect a memory flow misspeculation at run-time,so
memory flow speculation has higher overhead than control specu-
lation.

Object Lifetime Speculation: Object lifetime speculation is guided
by a profiler to identify dynamic objects which are private toa sin-
gle loop iteration. The profiler reports allocation sites whose ob-
ject is not freed in the same iteration of a loop, and deallocation
sites whose object is not allocated in the same iteration. Updates to
iteration-private objects are independent across iterations, and are
not live-out of the loop, reducing the amount of inter-node commu-
nication. Specialized versions ofmalloc andfree automatically
test for misspeculation without inter-node communication.

Figure 4 shows a PDG with profiling results for the example code
in Figure 1, where the node number corresponds to the line number.
Since the value ofidx[i] is irregular, static alias analysis conser-
vatively inserts a loop-carried memory dependence onnode 7.
Since I/O operations must be executed in program order, a loop-
carried self-dependence exists onnode 9. Figure 5 shows how
the speculator generates a Spec-PDG by speculatively removing
loop-carried dependences based on the profiling results in Figure 4.
According to the profiles, the branch fromnode 8 to node 9
never occurs during profiling, hence the control speculatormarks
node 9 as speculatively removed. The loop-carried memory de-
pendence onnode 7 rarely occurs, so the memory speculator also
removes that dependence.

4.2 DOALL Parallelizer
The DOALL transform is applied whenever a loop can be paral-
lelized non-speculatively. For example,Loop_A in Figure 1 can
be parallelized with DOALL assuming that static alias analysis
proves the absence of loop-carried dependences. Figure 6 shows
how the DOALL parallelizer transforms the example code in Fig-
ure 1. The loop is wrapped by calls tobeginInvocation and
endInvocation, which initialize and finalize the runtime li-
brary for parallel execution. Register live-ins are explicitly trans-
ferred using inter-node communication queues. Memory live-ins
are handled transparently by the copy-on-access mechanismpro-
vided by the Cluster Spec-DOALL runtime. Register and memory
live-outs are also transferred explicitly via inter-node communica-
tion queues.



 
// Worker Process 

beginInvocation(Spec-DOALL); 
consumeLiveIns(); 

executeForLoop(); 

return; 
 

recoveryBB: 
  waitRuntimeRecoverMemory(); 

  i = loadLV(idx_i); 

  goto header; 
 

Loop_B: 
// Master Process 

beginInvocation(Spec-DOALL); 
produceLiveIns(); 

commitProcess(recoveryFcn); 

consumeLiveOuts(); 
endInvocation(); 

 
recoveryFcn: 

recoveryFcn() { 

  int i=loadLV(idx_i); 
  irregular[idx[i]]+=foo(i); 

  if(irregular[idx[i]]>error) 
    printf(“I/O operation”); 

  i++; 

  storeLV(idx_i, i); 
} 

 
executeForLoop(){ 

  for(int i=0; i<N; i++) { 
  header: 

    if(TXBoundary()==isMisspec) 

      goto recoveryBB; 
    if(i%NP==tid) { 

      storeLV(idx_i, i); 
      specLoad(&irregular[idx[i]]); 

      irregular[idx[i]]+=foo(i); 

      specStore(&irregular[idx[i]]); 
      if(irregular[idx[i]] > error){ 

        misspec(); 
        goto recoveryBB; 

  } } } 

  if(endInvocation()==isMisspec) 
    goto recoveryBB; 

}: 

Figure 7: Spec-DOALL (Loop_B)

4.3 Spec-DOALL Parallelizer

Algorithm 1: Spec-DOALL Parallelizer
Data: loop is a target loop,specLoopPDGis PDG with speculation

information
Result: generate a speculatively parallelized loop

1 let header= getLoopHeader(loop);
2 DOALLTransform(loop);
3 let recoveryBB= insertRecoveryBB();
4 insert(waitRuntimeRecoverMemory, recoveryBB);
5 foreach lv ∈ loop_carried_local_variablesdo
6 insert(loadLV, getLVIdx(lv), lv, recoveryBB);
7 let newLV= insert(storeLV, getLVIdx(lv), header);
8 end
9 let isMisspec= insert(TXBoundary, header);

10 insert(“if(isMisspec) goto recoveryBB”, header) ;
11 foreach BasicBlock exitBB∈ LoopExitBBsdo
12 let isMisspec= insert(endInvocation, exitBB);
13 insert(“if(isMisspec) goto recoveryBB”, exitBB) ;
14 end
15 foreach branchInfo∈ getControlSpeculated(specLoopPDG)do
16 let branch= getBranchInst(branchInfo);
17 let branchOutBB= getUnlikelyBranchedBB(branchInfo);
18 let misspecBB= createBB();
19 redirectControl(branch, branchOutBB, misspecBB);
20 insert(misspec, misspecBB);
21 insert(“goto recoveryBB” , misspecBB);
22 removeBBs(getDominatedBBs(branch, branchOutBB));
23 end
24 foreach edge∈ getMemorySpeculated(specLoopPDG)do
25 let StoreInst st= getSrcInst(edge);
26 let LoadInst ld= getDstInst(edge);
27 insert(specLoad, getPointerAddr(ld), before(ld));
28 insert(specStore, getPointerAddr(st), after(st));
29 end

If DOALL is not applicable, but there is no loop-carried depen-
dence in theSpec-PDG, the Spec-DOALL parallelizer transforms
the sequential loop to speculatively parallelized code. The out-
put must include codes to detect and recover misspeculated execu-
tion. Figure 7 shows how the Spec-DOALL parallelizer transforms
Loop_B from Figure 1.

Algorithm 1 shows a procedure that performs this transformation.
The Spec-DOALL parallelizer begins by transforming the sequen-
tial loop in the same way as the DOALL parallelizer (Line 2). It
then creates a basic block namedrecoverBB (Lines 3–4). If con-
trol reaches the recovery block, the process begins local misspecu-
lation recovery.

Lines 9–14 isolate each loop iteration as a separate transaction by
inserting calls toTXBoundary at the loop header and every loop
exit. These check whether the master process has sent a misspec-
ulation signal. If so, they initiate local recovery by branching to
recovery code. Since other workers may misspeculate after the
worker finishes its execution,endInvocation blocks until all
workers finish parallel execution.

Lines 5–8 insert codes to support recovery in the case of misspecu-
lation. Calls tostoreLV andloadLV pass local variables in each
transaction for the runtime to restore locals in the event ofmisspec-
ulation. It handles only loop-carried local variables; other local
variables are either unchanged or unused across iterations, and do
not need recovery support.

For control speculation, lines 15–23 redirect speculated branches to
misspecBB. For memory speculation, lines 24–29 instrument rele-
vant memory operations by insertingspecLoad andspecStore
calls. These calls collect a transaction log, which is used by the
runtime system to detect misspeculation.

4.4 Recovery Code Generator
If misspeculation occurs, all the following speculative iterations
must be squashed, and the misspeculated iteration should beex-
ecuted again honoring the semantics of the original program. The
misspeculated iteration will be executed on the master process with
the committed program state. The Cluster Spec-DOALL compiler
creates a recovery function which performs one iteration ofthe
loop. The compiler redirects back edges to a loop exit block to ex-
ecute the recovery code only for the misspeculated iteration. To re-
store register state, the Cluster Spec-DOALL compiler inserts code
to restore local variables.

4.5 Communication Optimization
When scaling transactional memories to a large number of cores,
the limited commit bandwidth becomes a bottleneck for the whole
system. In many programs, memory operations within inner loops
of a parallelized loop claim the largest portion of the commit band-
width to handle live-out and speculative memory accesses. To re-
duce the amount of communication generated by the inner loops,
the Cluster Spec-DOALL compiler performs two optimizations:
promotion and batching.

When validating a memory access in a speculative iteration,the
validator usesspecStore to reflect the memory update to the
validator’s memory version, andspecLoad to check if the mem-
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ory access reads the correct version. Within a single transaction,
multiple accesses to the same address cause redundant communi-
cation; only the first load from and the last store to that address af-
fect validation. Exploiting this, the communication promoter hoists
loads from and stores to a loop-invariant address out of the inner
loop to the loop preheader and loop exits, respectively. Unlike con-
ventional store/load promotion, this optimization is insensitive to
the existence of other instructions that may overwrite or reload the
same address, because only the first load and the last store within a
transaction matter for validation. Similarly, calls toproduce for
live-outs can be moved to the inner loop’s exits.

The service bandwidth is limited not only by the communication
volume in bytes but also by the number of messages. Batching
is an optimization which gathers dense reads from or writes to a
chunk of memory into a single jumbo read or write. The batcher
is applicable to memory operations in a counted inner loop whose
pointer operands are induction variables of that loop. If applicable,
it removes the calls tospecStore (specLoad) from the inner
loop, and places calls tospecStoreRange (specLoadRange)
after (before) the inner loop. In this way, the Cluster Spec-DOALL
runtime can deliver the same number of bytes in fewer messages. A
batched function call may be further promoted higher in a loop nest
in a way analogous to the promotion of a speculative load or store.
In other words, batching not only reduces the number of messages
but also exposes hidden opportunities for communication optimiza-
tion by transforming loop-variantspecStore and specLoad
into loop-invariantspecStoreRange andspecLoadRange.

5. Cluster Spec-DOALL RUNTIME SYSTEM
The Cluster Spec-DOALL runtime executes parallelized loops sup-
porting speculative memory accesses, misspeculation detection and
recovery, live-in and live-out handling, and process management.
This section describes how the runtime executes the parallelized
loops and detects misspeculation.

5.1 The Execution Model
The Cluster Spec-DOALL runtime orchestrates the executionof
parallel codes generated by the Cluster Spec-DOALL compiler on
clusters. To exploit parallel hardware for misspeculationdetection
and recovery, the Cluster Spec-DOALL runtime offloads the task

of validating speculative memory accesses to a separate process,
calledvalidator process, and keeps the committed, non-speculative
memory state in the master process as in [8].

Figure 8 shows how the Cluster Spec-DOALL runtime interacts
with a Spec-DOALL loop. When a parallel region starts, the mas-
ter process should pass all live-in values to the worker processes
because only the master process keeps the entire non-speculative
program state. A conservative approach can be to broadcast all
memory pages that are potentially live-in, but this would bepro-
hibitively expensive. Instead, the Cluster Spec-DOALL runtime
addresses this using a lazy, copy-on-access (CoA) scheme, which
delivers live-in memory pages on demand as in [8]. Each worker
installs a custom page fault handler. Whenever a worker process
attempts to access a live-in memory address which has not yetbeen
transferred to the worker’s memory space, a page fault occurs be-
cause the address has not been mapped yet. Then the page fault
handler contacts the master process to retrieve a copy of thepage
being accessed, maps a new page at the same base address in the
worker’s address space, and copies the contents of the retrieved
page.

Worker processes execute each iteration independently. They pass
the address, size, and value of both live-out memory store and spec-
ulative load and store to the validator process as they execute the
parallel loop. Once the validator verifies the correctness of all spec-
ulative memory accesses, all live-out values are committedinto the
master process. When the execution of the parallel loop is fin-
ished, sequential execution resumes in the master process.Since
all live-out values are passed from the worker processes to the mas-
ter process, the master process can immediately start executing the
following sequential region without extra communication.

If a misspeculation is detected, the recovery procedure begins as
shown in Figure 9. The master process sends a misspeculationsig-
nal to all workers. The workers unmap all pages which they re-
ceived via the copy-on-access mechanism. The master process then
executes a single misspeculated iteration of the parallel loop with
its non-speculative memory state. Register values which are live
across loop iterations are communicated to the worker processes,
and these processes receive a signal from the master processto re-
sume parallel execution. The workers recover their workingmem-
ory state via the copy-on-access mechanism.

5.2 Misspeculation Detection
The Cluster Spec-DOALL runtime extends conventional distributed
TM systems [4, 8, 9, 12] to support three types of speculation. The
Cluster Spec-DOALL runtime supports memory flow speculation
via memory versioning, control speculation by allowing thepro-
gram to explicitly trigger misspeculation recovery, and object life-
time speculation by tracking memory allocations and deallocations.

When memory speculation is employed, one process is dedicated
as a validator process. The validator tracks memory accesses and
checks memory versions. When a transaction (i.e., single itera-
tion) is finished without misspeculation, the validator forwards all
speculated stores to the master process which keeps the committed
program state.

The Cluster Spec-DOALL runtime exposes amisspec function
interface to invoke a recovery process from control misspeculation.
The Cluster Spec-DOALL compiler inserts calls to this function
along all speculated control flow edges. If a speculated control



flow occurs at run-time, the current and following transactions will
be squashed and rolled back for non-speculative re-execution.

Object lifetime speculation is applied to allocation and deallocation
sites whose object is likely to be private to one iteration ofthe loop.
The Cluster Spec-DOALL compiler replaces calls tomalloc and
free with specMalloc andspecFree. The runtime system
records a list of speculatively local objects that have beenallocated.
When a transaction terminates, the runtime system checks whether
the list is empty. If any speculatively local object was not freed
by the end of the transaction, misspeculation is signaled. Note that
this additional bookkeeping occurs locally at each worker node,
so inter-node communication is unnecessary to detect misspecula-
tion. Speculatively local objects are allocated in the private mem-
ory space of each worker and considered thread-local, hencereduc-
ing overhead for validation and live-out communication.

6. EVALUATION
Cluster Spec-DOALL is evaluated on a 120-core cluster (10 nodes
× 12 cores). Each node has two Intel 6-core Westmere X5650 pro-
cessors running at 2.67 GHz with 48 GB of memory. It runs 64-bit
RedHat Enterprise Linux v5. The inter-node communication link
is Mellanox ConnectX Infiniband x4 QDR. OpenMPI (v1.4.1 with
gcc v4.1.2, -O2) is used as the underlying communication layer.
The Cluster Spec-DOALL compiler builds on the LLVM compiler
infrastructure [10].

Cluster Spec-DOALL is evaluated with benchmarks from Poly-
Bench [15] and PARSEC [2] written in C as listed in Table 2. To
use different inputs for profiling and evaluation, and to accept a
problem size from the command line, we changed statically allo-
cated fixed size arrays to dynamically allocated variable size arrays
in the PolyBench benchmarks. Forswaptions, we removed con-
trol predicated I/O operations from a callee of the hottest loop be-
cause inter-procedural control speculation is not yet implemented.
Memory and object lifetime speculations are inter-procedural.

The sequential programs are profiled less than one minute with pro-
filing inputs. The evaluation inputs are chosen for the original se-
quential programs to run longer than one hour to observe perfor-
mance scalability on a large number of cores. Five benchmarks
from PolyBench are not used for evaluation because their execu-
tion time is too short to be parallelized even with large input sets.

6.1 Parallelization Statistics and Results
Table 2 shows how many dependences are speculated in each bench-
mark. Although speculation is not necessary to manually paral-
lelize PolyBench benchmarks, Cluster Spec-DOALL employs spec-
ulation to avoid relying on strong static alias analysis. While Clus-
ter Spec-DOALL can parallelize benchmarks such as2mm, 3mm,
jacobi-2d-imper, andseidelwithout any speculation, it re-
quires speculation for the other benchmarks.

blackscholes, an option-pricing program from PARSEC, re-
quires control speculation if it is compiled with error checking en-
abled. The hottest loop prints error messages if a computed price
is different from its reference price. The print operation blocks
DOALL parallelization, but profile results show that it rarely oc-
curs. Cluster Spec-DOALL speculates that the print condition will
not occur, and parallelizes the loop with Spec-DOALL.

Cluster Spec-DOALL parallelizes many loops inswaptionswith
memory speculation. In addition, Cluster Spec-DOALL applies

object lifetime speculation forswaptions unlike other bench-
marks. The outermost loop allocates and frees objects whichlive
only for one iteration. Using object lifetime profile information,
Cluster Spec-DOALL speculates that the allocated memory ispri-
vate to each iteration.

Figure 10 shows the program speedup. Base is the execution time
of the original sequential program. In this graph, the horizontal
axis shows the number of cores, and the vertical axis shows full
application speedups. All execution times were averaged over five
runs. The evaluated benchmarks are categorized into two groups; 8
scalable benchmarks and 5 slowdown benchmarks.

6.2 The Eight Scalable Benchmarks
Cluster Spec-DOALL achieves scalable performance on the 8 scal-
able benchmarks due to a synergistic combination of three design
choices.

First,speculation makes scalable fully-automatic parallelization
possible.Static analysis can always be better, but it is never good
enough. Imprecision of static analysis limits classical automatic
parallelization. Figure 12 shows performance speedups on 120
cores for DOALL parallelization with only static analysis,Clus-
ter Spec-DOALL, and DOALL parallelization with the aid of an
oracle for dependence analysis. Speculation allows the compiler
to parallelize outer loops in some programs that DOALL failsto
parallelize, and leads to 43.8× geomean performance speedup for
8 scalable programs, while non-speculative DOALL paralleliza-
tion achieves only 4.5× geomean performance speedup. Cluster
Spec-DOALL achieves speedup within 7% of the maximum oracle
speedup, 46.4×.

Second,communication optimization realizes the scalability po-
tential in Cluster Spec-DOALL. Some programs have high ratio
of memory accesses to computation. For example, each iteration
in 2mm, a matrix multiplication benchmark, requires two loads and
one store to execute only one floating-point multiplication. This
high rate of memory accesses requires a large amount of commu-
nication, degrading performance. When applicable based onthe
communication pattern, Cluster Spec-DOALL optimizes commu-
nication by promoting and batching communication functioncalls
such asproduce, specLoad andspecStore. Table 2 shows
the number of optimized function calls and over 99% of the com-
munication is optimized away. Small input sets are used for this
result because the unoptimized versions explode executiontime.

In addition, Cluster Spec-DOALL privatizes dynamically allocated
memory objects if the objects are speculated to be iteration-local.
Its performance impact is evaluated usingswaption benchmark
and two versions of the runtime with and without privatization on
12 cores. A small input set is used because the execution time
explodes without privatization. With privatization, the volume of
communication in bytes decreases by 99.6%, and the performance
speedup increases from 0.1× to 3.8×.

Third, static analysis and a separate commit process reduces
validation overhead.Software transactional memory systems have
suffered from large validation overhead [5]. Table 2 shows the vali-
dation overhead measured by comparing performance speedups for
Spec-DOALL programs with and without validation on 120 cores.
Exceptlu, there is no significant performance difference. It is be-
cause the task of validation is effectively offloaded to a separate
process to overlap validation with computation in the worker pro-



Benchmark Benchmark
Suite

Loops P’llized Loops Speculation
Coverage of

P’llized Loops

Communication
Validation
OverheadTotal P’llizable DOALL

Spec-
Mem Ctrl

Optimization
DOALL P B Reduction

2mm PolyBench 20 14 7 0 0 0 >99.99% 0 9 99.76% NA
3mm PolyBench 27 20 10 0 0 0 >99.99% 0 13 99.76% NA
correlation PolyBench 13 8 4 1 1 0 >99.99% 3 2 99.01% 3.62%
covariance PolyBench 11 7 3 1 1 0 >99.99% 1 3 99.13% 6.87%
doitgen PolyBench 18 14 4 1 1 0 >99.99% 1 7 99.03% 29.85%
gemm PolyBench 13 8 3 1 1 0 >99.99% 0 6 99.81% 1.85%
gramschmidt PolyBench 10 5 2 1 2 0 99.97% 1 1 18.10% 34.79%
jacobi-2d-imper PolyBench 9 6 3 0 0 0 >99.99% 0 4 24.01% NA
lu PolyBench 8 5 1 2 5 0 99.96% 2 4 45.79% 2194.14%
ludcmp PolyBench 12 4 1 2 7 0 99.96% 4 3 34.63% 66.49%
seidel PolyBench 7 2 1 0 0 0 0.04% 0 1 33.26% NA
blackscholes PARSEC 5 2 0 1 0 1 >99.99% 1 0 99.99% NA
swaptions PARSEC 87 57 8 16 36 0 >99.99% 5 13 2.41% 8.24%

Table 2: Benchmark Details: Total and P’llizable show the numbers of loops in each benchmark and loops which Cluster Spec-
DOALL can parallelize. DOALL and Spec-DOALL show the number of loops which Cluster Spec-DOALL acutally parallelizes.
The P’llized loops number can be different from P’llizable because nested loops are not parallelized if their outer loopis parallelized.
Mem and Ctrl show the number of memory flows and control flow edge speculations. Coverage shows execution time ratio of
parallelized loops over the entire program. In communication optimization, P and B stand for the number of Promoted and Batched
function calls, and reduction stands for the percent reduction in inter-process communication in bytes.

cesses. However, as shown inlu, once the validation cost exceeds
a certain threshold relative to the execution time of a loop iteration,
the validation process becomes a performance bottleneck. There-
fore, it is still important to reduce the amount of speculative mem-
ory accesses.

6.3 The Five Slowdown Benchmarks
There are five benchmarks that experience slowdown:lu,ludcmp,
gramschmidt, jacobi-2d-imper, andseidel. Based on
quantitative bottleneck analysis, these benchmarks are divided into
two classes.

For the first class, which is exemplified byseidel, the perfor-
mance speedup is limited by Amdahl’s Law. As shown in Table 2,
the parallelized loop accounts for a very small fraction of the en-
tire program execution because only an initialization loopis par-
allelized. The hottest loop cannot be parallelized profitably, even
speculatively, because of frequent loop-carried data dependences.
To parallelizeseidel, other parallelization techniques need to be
applied. In other words, DOALL and Spec-DOALL parallelization
is not suitable for this kind of programs.

For the second class of benchmarks such asgramschmidt, lu,
ludcmp, and jacobi-2d-imper, inter-node communication
bandwidth limits performance. Figure 13 explains why thesebench-
marks suffer slowdown, showing their communication bandwidth
after communication optimization. Since outermost loops in these
benchmarks have frequent loop-carried data dependences, Clus-
ter Spec-DOALL parallelizes their inner loops, so they are less
amenable to communication optimization than the other bench-
marks. As a result, they require many hundreds of megabytes per
second of communication bandwidth for misspeculation checking,
which is orders of magnitude greater than that of the other bench-
marks. The high communication bandwidth explains why these
benchmarks show performance slowdown even with oracle analy-
sis.

6.4 Misspeculation Analysis
Figure 11 shows how different misspeculation rates affect the per-
formance speedup ofblackscholes on different numbers of
cores. The input files are modified to cause misspeculation with

varying rates from 0.01% to 0.64%. The other benchmarks are
not evaluated because they do not have input-dependent misspec-
ulation. Higher misspeculation rate and more cores generally lead
to greater performance penalties. The misspeculation overhead is
more sensitive to the misspeculation rate than the number ofcores
because additional misspeculation causes a new recovery opera-
tion while synchronization overhead from additional coresis over-
lapped with the existing one. Due to the high recovery overhead,
the Cluster Spec-DOALL compiler should speculate dependences
only with high confidence to achieve good parallel performance.

7. RELATED WORK
Automatic Parallelization System for Clusters: Intel’s Cluster
OpenMP [7] extends OpenMP, a parallel programming API for
shared-memory multiprocessors, to clusters with distributed mem-
ory systems. Although the Cluster OpenMP compiler transforms
sequential programs to parallel codes automatically, programmers
are still required to specify what and how to parallelize them with
programmer annotations. SUIF [1, 19] parallelizes a sequential
program without any programmer annotation. However, the ap-
plicability of SUIF is limited to array-based scientific applications,
and SUIF relies on programmer hints to decompose shared data
across multiple nodes on a cluster [1]. In contrast, ClusterSpec-
DOALL does not require any programmer annotation for shared
data since the Cluster Spec-DOALL runtime handles this via copy-
on-access and unified virtual address space, effectively hiding plat-
form details.

Techniques to Overcome the Limitations of Static Compiler
Analysis: Rus et al. proposes Hybrid Analysis (HA) which exploits
runtime support for dependence analysis in statically indeterminate
cases [18]. Although their system potentially improves theappli-
cability of automatic parallelization, heavyweight run-time analy-
sis can slow down program execution significantly since there is
no overlap between the analysis and the execution phases. Like
Cluster Spec-DOALL, STMlite [13] is a speculative paralleliza-
tion system for loop parallelization, which consists of an automatic
parallelizing compiler and a low-cost software transactional run-
time. However, both the HA system and STMlite are implemented
and evaluated on small-scale shared-memory machines with 4and
8 cores, respectively, and their scalability with a large number of
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Figure 10: Overall speedup (Benchmarks in the legend are or-
dered from highest to lowest speedup)
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Figure 11: Speedup ofblackscholes with varying misspec-
ulation rates
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Figure 13: Communication bandwidth

cores has not been demonstrated. Cluster Spec-DOALL makes
fewer assumptions on the target memory system, hence it is gen-
erally more applicable than these two systems. The POSH com-
piler [11] is capable of automatically parallelizing complex, general-
purpose programs, but it requires TLS hardware support, hence it
cannot be used on a commodity cluster.

Speculative Runtime Systems for Clusters: The required run-
time support from Cluster Spec-DOALL can be easily provided
by existing transactional runtime systems for clusters. The Cluster
Spec-DOALL runtime is inspired by DSMTX [8] and STMlite [13]
to have a separate commit process. DSMTX supports specula-
tive pipeline parallelism as well as speculative DOALL parallelism
on clusters but there is no known automatic parallelizing compiler
targeting DSMTX. Distributed Multiversioning (DMV) [12] modi-
fies a software distributed shared memory system to support trans-
actions at the page granularity. Like the Cluster Spec-DOALL
runtime, the DMV runtime handles decomposition of shared data
across different nodes without programmer hints. Cluster-STM [4]
is a software TM (STM) system for large-scale clusters. Cluster-
STM uses special memory allocation functions such asstm_alloc,
stm_all_alloc, andstm_free, so programmers and compil-
ers should replace the memory allocation function calls to those
provided by Cluster-STM. DiSTM [9] is a distributed STM system
on Java Remote Method Invocation (RMI).

8. CONCLUSION
Cluster Spec-DOALL is the first fully automatic Spec-DOALL par-
allelization system for clusters. Cluster Spec-DOALL optimizes
communication and validation to improve scalability on clusters.
For 8 scalable benchmarks out of 13 PolyBench and PARSEC bench-
marks, Cluster Spec-DOALL achieves a geomean speedup of 43.8×
over the original sequential programs on a 120-core cluster, whereas
DOALL-only parallelization achieves only 4.5× geomean speedup.
This speedup is within 7% of the maximum oracle speedup, 46.4×.
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