
Decoupled Software Pipelining Creates

Parallelization Opportunities

Jialu Huang Arun Raman Thomas B. Jablin Yun Zhang Tzu-Han Hung David I. August

Departments of Computer Science and Electrical Engineering

Princeton University

{jialuh,rarun,tjablin,yunzhang,thhung,august}@princeton.edu

Abstract

Decoupled Software Pipelining (DSWP) is one approach to

automatically extract threads from loops. It partitions loops

into long-running threads that communicate in a pipelined

manner via inter-core queues. This work recognizes that

DSWP can also be an enabling transformation for other

loop parallelization techniques. This use of DSWP, called

DSWP+, splits a loop into new loops with dependence pat-

terns amenable to parallelization using techniques that were

originally either inapplicable or poorly-performing. By par-

allelizing each stage of the DSWP+ pipeline using (poten-

tially) different techniques, not only is the benefit of DSWP

increased, but the applicability and performance of other

parallelization techniques are enhanced. This paper evalu-

ates DSWP+ as an enabling framework for other transfor-

mations by applying it in conjunction with DOALL, LO-

CALWRITE, and SpecDOALL to individual stages of the

pipeline. This paper demonstrates significant performance

gains on a commodity 8-core multicore machine running a

variety of codes transformed with DSWP+.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Compilers, Optimization; C.1.4

[Processor Architectures]: Parallel Architectures

General Terms Performance

Keywords multicore, parallelization, DSWP, speculation,

enabling transformation

1. Introduction

Chip manufacturers have shifted to multicore processors to

harness the raw transistor count that Moore’s Law continues

to provide. Unfortunately, putting multiple cores on a chip

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

CGO’10, April 24–28, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-60558-635-9/10/04. . . $10.00

does not directly translate into performance. The trend to-

ward simpler cores and the increasing disparity between the

growth rates of core count and off-chip bandwidth means

performance may even degrade. Not only do sequential

codes suffer, multi-threaded programs may too deteriorate

due to smaller caches per core and lower single-threaded per-

formance. Consequently, producing well-formulated, scal-

able parallel code for multicore is the biggest challenge fac-

ing the industry.
Concurrency and non-determinism pose fundamental

problems for programmers looking to (re-)write parallel

code, as is evident in active research in automatic tools for

the identification of deadlocks, livelocks, and race condi-

tions. Conceptually, tools to automatically identify and ex-

tract parallelism appear more attractive. Until recently, suc-

cess in automatic loop parallelization was restricted to the

scientific domain. If all the iterations of a loop can be ex-

ecuted concurrently, then the DOALL transformation can

be applied to extract the parallelism [1]. If there are inter-

iteration (or loop-carried) dependences in the loop, then

techniques such as DOACROSS and DOPIPE may be ap-

plicable [4, 6]. The applicability of these techniques is gen-

erally limited to codes with regular, array-based memory

access patterns, and regular control flow, hence their success

in scientific codes.
Unfortunately, the vast majority of general-purpose ap-

plications have irregular control flow and complex memory

access patterns using pointers. To parallelize such codes,De-

coupled Software Pipelining (DSWP) was proposed [15]. An

automatic parallelization technique, DSWP splits the loop

body into several stages distributed across multiple threads,

and executes them in a pipeline. To generate the pipeline or-

ganization, DSWP segregates dependence recurrences into

separate stages. Compared to DOALL, DSWP enjoys wider

applicability. Compared to DOACROSS, DSWP enjoys bet-

ter performance characteristics. By keeping critical path de-

pendences thread-local, DSWP is tolerant of long commu-

nication latencies between threads. By decoupling the exe-

cution of the threads using inter-core queues, DSWP is also

tolerant of variable latency within each thread.

node = list->head;

A: while (node != NULL) {

B: index = calc (node->data, arr[]);

C: density[index] = update_density

(density[index], node->data);

D: node = node->next;

}

Statement: Fraction of execution time

B: 50.0%

C: 37.5%

A,D: 12.5%

(a) Example code

data dependence
control dependence

A

B C

D

(b) Build PDG

loop−carried
Always

loop−carried
Not

loop−carried
Input−dependent

B

Stage 1

Stage 3

Stage 2

AD

C

SCC

SCC

SCC

(c) Construct and partition DAGSCC

Figure 1. Steps in the transformation of a sequential program (a) into a pipeline parallel program using DSWP. In (c), each

SCC has a different loop-carried dependence pattern.

This paper looks beyond the performance benefits of

DSWP, and explores DSWP as an enabling transforma-

tion for various loop parallelization techniques. At its core,

DSWP identifies dependence cycles within a loop and iso-

lates said cycles in stages of a pipeline. As a result, the

dependence patterns of each stage tend to be much simpler.

A key insight of this work is that other parallelization tech-

niques may often be applied or applied more effectively to

these simplified stages but cannot be applied to the original

code.
This paper introduces DSWP+, an enabling transforma-

tion for other loop parallelization techniques, and evalu-

ates DSWP+ in conjunction with several techniques such

as DOALL, LOCALWRITE, and SpecDOALL [1, 10, 17].

Unlike DSWP, which tries to maximize performance by

balancing the stages of the pipeline, DSWP+ tries to as-

sign work to stages so that they can be further parallelized

by other techniques. After partitioning, DSWP+ allocates

enough threads to the parallelizable stages to create a bal-

anced pipeline. DSWP+ yields more performance than

DSWP and other parallelization techniques when applied

separately. This paper shows how DSWP+ code partitioning

can mitigate problems inherent to some parallelization tech-

niques, such as redundant computation in LOCALWRITE.
Through manual parallelization of a variety of applica-

tion loops, this paper demonstrates significant performance

gains on existing multicore hardware. By virtue of its use of

fully automatic techniques, the proposed methodology can

be made fully automatic in future work.
Section 2 provides a detailed background of the DSWP

transformation and then illustrates how DSWP+ uses it to

create other parallelization opportunities. Section 3 dis-

cusses how various parallelization techniques are chosen

and integrated with DSWP+. Section 4 provides results of

experiments and analyzes factors that affect performance.

Section 5 discusses related work, while Section 6 concludes

the paper.

2. Motivation

The C code example in Figure 1(a) illustrates that in many

applications’ loops, the dependence pattern renders con-

ventional parallelization techniques either inapplicable or

poorly-performing. In the example, a program traverses a

linked-list list (statements A and D); the data in each

node of the list indexes into an array arr in order to cal-

culate the index (statement B), and updates the density

array at index (statement C). By applying DSWP+ to this

loop, the very techniques that were originally inappropriate

can become applicable and well-performing. For illustrative

purposes, assume that statement B accounts for 50%, state-

ment C accounts for 37.5%, and statements A and D account

for 12.5% of the total execution time of the loop.
Figure 1(b) shows the Program Dependence Graph (PDG)

of the loop [7]. There are many inter-iteration dependences.

The inter-iteration self-dependence in statement C arises be-

cause the index may not always be different on different

iterations. It depends on the data inside each node, the con-

tents of array arr, and the calc function.
Inter-iteration dependences prevent executing each itera-

tion of the loop independently (as in DOALL) without costly

synchronization. DOACROSS schedules entire loop itera-

tions on different threads, while synchronizing dependences

to maintain correctness. Although DOACROSS is applica-

ble, the large amount of synchronization will severely limit

the benefits of parallelization. DOACROSS communicates

dependence recurrences (cycles in the PDG) from core to

core, putting inter-core communication latency on the criti-

cal path [22].
Thread-Level Speculation (TLS) may speculatively re-

move dependences that prevent DOALL or DOACROSS

from being applicable [14, 17, 20, 24]. In the example

shown, speculating all loop-carried dependences to make

DOALL applicable could cause excessive misspeculation

since the linked-list traversal dependence manifests on ev-

ery loop iteration. A better option is to synchronize these de-

pendences as in DOACROSS and speculate only the input-

dependent self-dependence in statement C. However, the

problem of inter-core communication latency on the critical

path persists.
In contrast to DOALL and DOACROSS which partition

the iteration space across threads, DSWP partitions the loop

body into stages of a pipeline, with each stage executing

within a thread. DSWP’s pipeline organization keeps de-

pendence recurrences local to a thread, avoiding communi-

cation latency on the critical path. DSWP operates in four

steps [15].

• First, DSWP builds the PDG of the loop [1]. The program

dependence graph contains all data (both register and

memory) and control dependences, both intra- and inter-

iteration. Figure 1(b) shows the PDG for the loop in

Figure 1(a).

• Second, DSWP finds the loop recurrences, instructions

participating in a dependence cycle. DSWP groups de-

pendence cycles into strongly-connected components

(SCCs) that form an acyclic graph. Figure 1(c) shows

the DAGSCC. Each node in the DAGSCC is a single SCC.

These SCCs form the minimum scheduling units so that

there are no cross-thread cyclic dependences.

• Third, DSWP allocates each SCC to a thread. Since the

slowest stage in the pipeline limits overall performance,

DSWP tries to balance the load on each stage when

assigning SCCs to threads. This partitioning operation is

shown using horizontal lines in Figure 1(c).

• Finally, DSWP inserts produce and consume operations

to transmit data values in case of data dependences and

branch conditions for control dependences.

While DSWP often provides noticeable performance im-

provement, it is limited by the number and size of the SCCs.

DSWP extracts at most one thread per SCC. Further, the

pipelined organization means that the throughput is lim-

ited by the slowest stage (Speedup = 1/Tslowest stage). In the

example loop, DSWP performance is limited to 2.0x (=

1/TStage 2). However, as Figure 1(c) shows, the loop-carried

dependence pattern in each stage is different. While the loop-

carried dependences in Stage 1 always manifest, there are

no loop-carried dependences in Stage 2 and the manifesta-

tion of the loop-carried dependence in Stage 3 depends on

the input. By choosing suitable parallelization strategies for

Stages 2 and 3, the execution times of SCCB and SCCC can

be reduced to that of SCCAD. The resulting pipeline is po-

tentially balanced.
While there may be dependences inside calc that are

carried across an inner loop, note that B does not contain any

loop-carried dependences across the loop being parallelized.

Consequently, DOALL may be applied to the second stage

which can now be replicated across multiple threads. Stage

1 distributes the values it produces in a round-robin fashion

across iterations to the multiple Stage 2 threads. By extract-

ing a new loop with no loop-carried dependences out of the

original, DSWP+ makes DOALL applicable.
After the DSWP+DOALL transformation, the obtain-

able speedup is limited to 2.67x (= 1/TStage 3). The self-

dependence in statement C inhibits parallelization. Since the

index depends on the contents of arrayarr, node->data,

Thread i:

if (i == owner (density[index])) {

density[index] = update_density

(density[index], node->data);

}

Figure 2. Memory ownership checking in LOCALWRITE

and the calc function, it is not guaranteed to be differ-

ent on different iterations; in other words, the manifesta-

tion of the dependence from statement C in one iteration

to another is input-dependent. Consequently, the compiler

must conservatively insert a loop-carried dependence in the

PDG preventing DOALL from being applicable. However,

a technique known as LOCALWRITE can be applied [10].

LOCALWRITE partitions the array into blocks and assigns

ownership of each block to a different thread. Each thread

only updates the array elements belonging to its block. Fig-

ure 2 shows the code for each thread: updates to the array

are guarded by ownership checks. While LOCALWRITE is

applicable to the original loop in Figure 1(a), it will perform

poorly due to the problem of redundant computation (see

Section 4.2.2 for details).
An alternative parallelization of Stage 3 is possible. Spec-

ulation can be used to remove the loop-carried dependence

from statement C to itself. Hardware or software TLS mem-

ory systems can be used to detect whether the dependence

manifests; if it does, then the violating iteration(s) will be

rolled back and re-executed [14, 17, 20, 23]. Blindly specu-

lating all loop-carried dependences in the original loop will

cause excessive misspeculation because other loop-carried

dependences (self-dependence in statement D) manifest on

every iteration. The overhead of misspeculation recovery

negates any benefits of parallelization. By separating out the

problematic dependences, DSWP+ creates a loop with de-

pendences that can be speculated with a much higher degree

of confidence, thus getting good performance.
In summary, the example shows that DSWP+ can trans-

form a loop with an unworkable dependence pattern into

multiple loops each of which can be parallelized in (poten-

tially) different ways using the very techniques that failed

on the original loop. The following section describes the

integration of specific loop parallelization techniques with

DSWP+.

3. Code Transformation With DSWP+

The code example in Figure 1(a) is used to illustrate the

transformations done with DSWP+. For the sake of clar-

ity, transformations are shown at the source-code level. Al-

though these transformations were performed manually, we

emphasize that each of these techniques has been automated

in parallelizing compilers. Details of the algorithms can be

found in [3, 10, 15, 16]. Automation of the ensemble tech-

nique involves bringing them together into one framework

and changing the optimization goal of DSWP.

node = list->head;

while (node != NULL) {

produce (Q[1,2], node);

produce (Q[1,3], node);

node = node->next;

}

(a) Stage 1: SCCAD in Figure 1(c)

while (TRUE) {

node = consume (Q[1,2]);

if (!node) break;

index = calc (node->data, arr[]);

produce (Q[2,3], index);

}

(b) Stage 2: SCCB in Figure 1(c)

while (TRUE) {

node = consume (Q[1,3]);

if (!node) break;

index = consume (Q[2,3]);

density[index] = update_density

(density[index], node->data);

}

(c) Stage 3: SCCC in Figure 1(c)

Figure 3. DSWP applied to the loop in Figure 1(a) extracts three stages which communicate using produce and consume

primitives.

3.1 DSWP+

Figure 1 shows the steps in the DSWP transformation. Af-

ter building the PDG of the loop, dependence recurrences

are identified, and the loop is partitioned into stages at the

granularity of SCCs. DSWP+ follows the first two steps of

the DSWP algorithm. In the third step, DSWP optimizes for

pipeline balance. In contrast, DSWP+ tries to put as much

work as possible in stages which can be subsequently paral-

lelized by other techniques. Finally, the other techniques are

performed on each stage, and threads are allocated to each

stage as to achieve pipeline balance. Figure 3 shows the code

for each stage. Data values and control conditions are com-

municated across threads using produce and consume prim-

itives. These primitives are implemented in software using

cache-aware, concurrent lock-free queues [8].

3.2 DSWP+PAR OPTI

The DSWP+ transformation works in conjunction with

other loop parallelization techniques. For a given paral-

lelization technique PAR OPTI, let DSWP+PAR OPTI be

the pipeline parallelization strategy that chooses the largest

stage(s) to which PAR OPTI is applicable. In this paper, we

investigate DSWP+DOALL, DSWP+LOCALWRITE, and

DSWP+SpecDOALL.

3.2.1 DSWP+DOALL

From Figure 1(c), the second stage is free of loop-carried

dependences. DOALL may be applied to this stage. Figure 4

shows the replication of the second stage. All the threads

executing the second stage share the same code. However, a

logical queue between two stages is implemented as several

physical queues between threads, and so the code for each

stage must be parameterized to support replication (hence

the thread id i in Figure 4). Stage 1 produces values to

the Stage 2 threads in a round-robin fashion. For example,

if there are two Stage 2 threads, then the values on even

iterations are sent from Stage 1 to (Stage 2, Thread 1), while

values on odd iterations are sent from Stage 1 to (Stage 2,

Thread 2). Stage 3 consumes from (Stage 2, Thread 1) and

(Stage 2, Thread 2) on alternate iterations in a corresponding

fashion.

3.2.2 DSWP+LOCALWRITE

LOCALWRITE partitions an array into blocks and assigns

ownership of each block to a one of several threads. Each

 if (!node) break;

while (TRUE) {

 node = consume (Q[1,2,i]);

 produce (Q[2,3,i], index);

}

 index = calc (node−>data, arr[]);

12.5 %

1

50.0 %

2

37.5 %

1

S
T

A
G

E
 1

S
T

A
G

E
 2

S
T

A
G

E
 3

while (node != NULL) {

}

 if (!node) break;

while (TRUE) {

 node = consume (Q[1,3]);

 index = consume (Q[2,3,i]);

 density[index] = update_density

 (density[index], node−>data);

}

Threads

Original Execution Time

 produce (Q[1,2,i], node);

 produce (Q[1,3], node);

 node = node−>next;

Figure 4. DSWP+ with DOALL applied to the second

stage. With 2 threads assigned to the second stage, speedup

can be improved to 2.67x (= 1/TStage 3). Assigning more

threads is useless because Stage 3 has become the bottle-

neck.

thread may only update array elements that it owns. Under

this ownership discipline, array updates do not need to be

synchronized. Figure 5 shows the application of LOCAL-

WRITE to Stage 3 of the pipeline. Stage 1 must produce

the value of node to all the Stage 3 threads. (In Figure 5,

the number of Stage 3 threads is n lw threads.) As in

DSWP+DOALL, the thread id (j in Figure 5) is used to se-

lect the physical queue between threads. Updates to global

state (the density array) are guarded by the ownership

check highlighted in Stage 3 in Figure 5. Typically, each

thread is given ownership of a contiguous block of array el-

ements. Figure 6 shows an example of ownership functions.

The scalability of LOCALWRITE is limited by the distribu-

tion of the values of index across the array blocks; if the

12.5 %

1

4

50.0 %

37.5 %

3

S
T

A
G

E
 1

S
T

A
G

E
 2

S
T

A
G

E
 3

 if (!node) break;

while (TRUE) {

 node = consume (Q[1,3,j]);

 index = consume (Q[2,3,i,j]);

 density[index] = update_density
 (density[index], node−>data);

}

 if (j == owner(density[index]))

 if (!node) break;

while (TRUE) {

 node = consume (Q[1,2,i]);

 produce (Q[2,3,i,j], index);

}

 index = calc (node−>data, arr[]);

 for (j in [0, n_lw_threads))

while (node != NULL) { # Threads

Original Execution Time

}

 produce (Q[1,2,i], node);

 for (j in [0, n_lw_threads))

 produce (Q[1,3,j], node);

 node = node−>next;

Figure 5. DSWP+ with DOALL applied to the second stage

and LOCALWRITE applied to the third stage. The own-

ership check for LOCALWRITE in Stage 3 is highlighted.

With 4 threads assigned to Stage 2 and 3 threads to Stage 3,

speedup can be improved to 8x (= 1/TStage 1).

distribution is uniform, performance scales linearly with ad-

ditional threads.
Referring to Figure 5, Stage 2 produces the index values

to Stage 3. The ownership check is inserted in the consumer

(Stage 3). This means that the producer (Stage 2) must pro-

duce the value of index on every iteration to all the con-

sumer threads. Each consumer thread must perform the own-

ership check for every index value. Figure 7 shows that

this redundancy can be eliminated by moving the ownership

check to the producer. On each iteration, the producer uses

the ownership check to determine the consumer thread that

is the owner of the array element density[index], and

communicates the value only to that owner.

owner (A[i]) {

n = number of elements in A

block_size = n / n_lw_threads

//n_lw_threads is the number of LOCALWRITE threads

//Assume n is evenly divisible by n_lw_threads

return (i / block_size)

}

Figure 6. Ownership function that assigns ownership of

blocks of contiguous array elements to different threads

S
T

A
G

E
 2

S
T

A
G

E
 3

 if (!node) break;

while (TRUE) {

 node = consume (Q[1,3,j]);

 index = consume (Q[2,3,i,j]);

 density[index] = update_density
 (density[index], node−>data);
}

 if (!node) break;

while (TRUE) {

 node = consume (Q[1,2,i]);

 produce (Q[2,3,i,j], index);

}

 index = calc (node−>data, arr[]);

 j = owner (density[index]);

Figure 7. Moving the ownership check to Stage 2 elimi-

nates redundancy in DSWP+LOCALWRITE.

3.2.3 DSWP+SpecDOALL

From Figures 1(a) and (c), statement C is conditionally self-

dependent with respect to the contents of each node, the

array arr, and the calc function; in other words, the prob-

ability of this dependence is a function of the input and is

significantly smaller than 1. This stage can be parallelized

using Speculative-DOALL. However, for the reasons men-

tioned in Section 2, the simplified dependence structure of

the stage gives a much higher degree of confidence than the

original loop.
Figure 8 shows the code transformation. Iterations of

the loop in Stage 3 are executed concurrently on multiple

threads. Original loads and stores become speculative loads

and stores (tx load and tx store in Figure 8). As in

DSWP+DOALL, Stage 2 is modified to produce values to

the Stage 3 threads in a round-robin fashion.
DSWP+SpecDOALL allows the system to restrict spec-

ulation (and also the risk of misspeculation) to a fraction

of the loop. By allowing stages to peek at queue entries

without immediately dequeueing them, misspeculation re-

covery of inter-core queues has almost no cost. The queue

entries that are peeked are dequeued when the iteration com-

mits. Loop termination causes the misspec handler to be

invoked. Conventional hardware or software TLS memory

systems can be used to provide the transactional support [14,

17, 20, 24].

4. Evaluation

We evaluate DSWP+ on a dual quad-core (total of 8 cores)

x86 machine. Table 1 gives the details of the evaluation

platform. The results are obtained by manual application of

DSWP+. The manual transformations proceeded systemati-

cally as a modern compiler would do, taking care to avoid

exploiting human-level knowledge of the application’s over-

all structure and purpose. GCC, LLVM-GCC, and LLVM

12.5 %

1

50.0 %

4

37.5 %

3

S
T

A
G

E
 1

S
T

A
G

E
 2

S
T

A
G

E
 3

 if (!node) break;

while (TRUE) {

 node = consume (Q[1,2,i]);

while (node != NULL) {

}

 index = calc (node−>data, arr[]);

 produce (Q[2,3,i,j], index);

}

 if (!node) misspec();

while (TRUE) {

 node = peek (Q[1,3,j]);

 index = peek (Q[2,3,i,j]);

 d_i = tx_load(&density[index]);

 n_d = tx_load(&node−>data);

 val = update_density(d_i, n_d);

 tx_store(&density[index], val);

}

Threads

Original Execution Time

 produce (Q[1,2,i], node);

 for (j in [0, n_lw_threads))

 produce (Q[1,3,j], node);

 node = node−>next;

Figure 8. DSWP+ with DOALL applied to the second stage

and SpecDOALL applied to the third stage. With 4 threads

assigned to Stage 2 and 3 threads to Stage 3, speedup can be

improved to 8x (= 1/TStage 1).

Processor Intel Xeon R©E5310

Processor Speed 1.60GHz

Processor Configuration 2 processors X 4 cores

L1 Cache size 32KB (per core)

L2 Cache size 4096KB (per 2 cores)

RAM 8GB

Operating System Linux 2.6.24

Compiler GCC and LLVM

Table 1. Platform details

with DSWP and DSWP+DOALL implementations assisted

the parallelizations. With the exception of CG, DSWP+ par-

allelized the hottest loop in each benchmark. Like many sci-

entific applications, most of the loops in CG (inside function

conj grad) are amenable to DOALL. As a result, paral-

lelizing the remaining loop that has irregular dependence

patterns becomes critical.
Table 2 gives detailed information about each benchmark

including its source [2, 13, 19, 21], name of the function

containing the parallelized loop, fraction of benchmark ex-

ecution time constituted by the loop, and the parallelization

techniques applied in conjunction with DSWP+.

4.1 Results

In Figure 9, each bar represents the best performance of

a technique on up to 8 threads. For each benchmark, the

first bar indicates the speedup obtained with whichever of

DOALL, LOCALWRITE, and SpecDOALL is applicable.

If the parallel optimization (PAR OPTI) is not applicable to

the unmodified code, then the speedup is shown as 1x. The

second bar indicates the speedup with DSWP which tries to

balance the work done by each stage. The third bar indicates

the speedup with DSWP+; recall that DSWP+ creates unbal-

anced stages with the intent to parallelize the larger ones. By

itself, the speedup with DSWP+ is worse than with DSWP.

However, applying DSWP+ with one or more of DOALL,

LOCALWRITE, and SpecDOALL results in significantly

greater performance as indicated by the fourth bar.

Source % of PAR OPTI
Benchmark Suite Function Runtime with DSWP+

ks Ref. Impl. FindMaxGp-

AndSwap

99.4 DOALL

otter Ref. Impl. find lightest -

geo child

13.8 DOALL

052.alvinn SPEC CFP main 96.7 DOALL

filterbank StreamIt FBCore 45.6 DOALL

456.hmmer SPEC CINT main loop serial 100.0 DOALL

GTC Ref. Impl. chargei 58.8 DOALL, LO-
CALWRITE

470.lbm SPEC CFP LBM perform-

StreamCollide

92.4 DOALL, LO-
CALWRITE,
IARD

CG NPB3.2-SER sparse 12.2 LOCALWRITE

ECLAT MineBench process invert 24.5 LOCALWRITE

197.parser SPEC CINT batch process 100.0 Spec-DOALL

256.bzip2 SPEC CINT compressStream 98.5 Spec-DOALL

Table 2. Benchmark details

4.2 Case Studies

Factors affecting the performance of each benchmark are

discussed below.

4.2.1 DSWP+DOALL

• ks is a graph partitioning algorithm. FindMaxGp-

AndSwap’s outer loop traverses a linked-list and the in-

ner loop traverses the internal linked-lists, finding the

internal linked-lists’ minimum value. The linked-list

traversal’s loop carried dependence prevents a DOALL

parallelization. DSWP+ splits the loop into two stages:

the first stage traverses the outer linked-list, while the

second stage traverses the internal linked-list. After

min-reduction is applied, multiple traversals on the in-

ner loop may proceed simultaneously in a DOALL-

style parallelization. By spawning multiple copies of

the second stage, which significantly outweighs the first,

DSWP+DOALL gets much better speedup than DSWP.

• otter is an automated theorem prover for first-order

and equational logic. The parallelized loop is similar to

the one in ks. While a loop iteration in ks takes about

5 µs on average, it takes only 0.03−0.22 µs in otter.

PAR_OPTI
DSWP
DSWP+
DSWP+PAR_OPTI

 0x

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

k
s

o
tt

er
−

1

o
tt

er
−

2

0
5
2
.a

lv
in

n

fi
lt

er
b
an

k

4
5
6
.h

m
m

er

G
T

C

4
7
0
.l

b
m

C
G

E
C

L
A

T

1
9
7
.p

ar
se

r

2
5
6
.b

zi
p
2

G
eo

m
ea

n

S
p
ee

d
u
p

Figure 9. Loop speedup on up to 8 threads using different parallelization techniques

Consequently, the communication instructions for syn-

chronization in the sequential stage constitute a much

larger fraction of the loop iteration time, limiting the

speedup. The balance between the two stages depends

on the input: Figure 9 shows that DSWP achieves a much

better balance and speedup on input2 (otter-2) com-

pared to input1 (otter-1).

• 052.alvinn is a backward-propagation-based artifi-

cial neural network. The parallelized loop is the second

level loop in the loop hierarchy in main. DOALL is

not directly applicable because there are loop-carried

dependences on array updates. However, when com-

bined with accumulator-expansion, DOALL yields 1.9x

speedup. DSWP partitions several loops inside the par-

allelized loop onto different stages. By using commu-

nication queues between stages as buffers for interme-

diate results, DSWP performs dynamic privatization of

the arrays, yielding a speedup of 1.4x with two threads.

DSWP+DOALL recognizes that the loop-carried de-

pendence in both DSWP stages can be removed using

accumulator-expansion, and merges them into a single

parallel stage followed by a sequential stage to per-

form reduction on the expanded arrays. This generates

code that is equivalent to DOALL with accumulator-

expansion. DSWP+DOALL also yields a speedup of

1.9x, with the sequential reduction stage limiting the per-

formance.

• filterbank applies a set of filters for multirate signal

processing [21]. As in 052.alvinn, the outer loop in

FBCore has two major inner loops and is not amenable

to DOALL because of inter-iteration dependences on ar-

ray updates. DSWP generates a pipeline with two stages,

with each inner loop in one stage, yielding a speedup

of 1.8x. DSWP+DOALL applies accumulator-expansion,

merges the two stages into a parallel stage and performs

the reduction in a sequential stage. This yields a speedup

of 6.3x.

Although the structure of 052.alvinn and filter-

bank’s parallelizations are very similar, the resulting

performance results are not. The difference in the speedup

of 052.alvinn and filterbank is due to the size

of the reduction. In 052.alvinn, there are two ar-

rays with a combined size of 150K bytes that need to

be privatized; in filterbank, only one array of size

16K bytes needs to be privatized. With more DOALL

threads, the reduction overhead soon becomes the perfor-

mance bottleneck. This limits the scaling of speedup in

052.alvinn to six threads.

• 456.hmmer is a computational biology application that

searches for patterns in DNA sequences using Profile

Hidden Markov Models. Scores are calculated in paral-

lel on sequences which are randomly selected. The Com-

mutative annotation is used to break the dependence in-

side the random number generator [12]. While the scores

are calculated in parallel, a sequential stage computes a

histogram of the scores and selects the maximum score.

With the Commutative annotation and max-reduction, the

loop can be parallelized using DOALL. DSWP+DOALL

generates essentially the same code, and performance is

for (m=0; m<mi; m++) {

for (n=0; n<4; n++) {

v1 = cal_v1 (m, n);

... ...

v8 = cal_v8(m, n);

i1 = cal_i1 (m, n, A1[]);

... ...

i8 = cal_i8 (m, n, A1[]);

densityi[i1] = densityi[i1] + v1;

... ...

densityi[i8] = densityi[i8] + v8;

}

}

Figure 10. Example loop from GTC: Main dependence pat-

tern is A[i] = A[i]+B

also the same. Speedup is limited by the sequential re-

duction phase.

4.2.2 DSWP+LOCALWRITE(+DOALL)

While LOCALWRITE is applicable to most irregular reduc-

tions, it suffers from the problem of redundant computation

that significantly affects its performance potential. Referring

back to Figure 1(a), applying just the LOCALWRITE trans-

formation would result in statement C being guarded by an

ownership check, and the entire loop being replicated across

threads. Since the linked-list traversal and calculation of the

index on each iteration is performed by every thread, per-

formance scaling is impeded. By extracting out the common

code executed by each LOCALWRITE thread into a separate

stage, DSWP+ alleviates the problem of redundant compu-

tation and makes LOCALWRITE better-performing.

• GTC is a 3D particle-in-cell simulator that studies micro-

turbulence in magnetically confined fusion plasma. Fig-

ure 10 shows a simplified form of the GTC loop. As in the

example code in Figure 1, there are loop-carried depen-

dences because of the A[i] = A[i]+B irregular reduction

pattern. LOCALWRITE is applicable to the loop; how-

ever, the rest of the computation in the loop is replicated

in each thread. The result is a slowdown over sequen-

tial execution. DSWP+ partitions the loop into a producer

stage that calculates the index and values, and a consumer

stage that updates the array elements. DSWP+DOALL is

applied to the producer since it does not have loop-carried

dependences, while DSWP+LOCALWRITE is applied to

the consumer since it has irregular reductions. This hy-

brid parallelization yields close to 2x speedup over se-

quential execution.

GTC’s performance is limited by several factors. First, the

producer communicates 64 values per iteration. While

DSWP is tolerant of long communication latencies, the

instructions executed to produce a value constitute an

overhead. Second, since each consumer thread con-

sumes values from all the producer threads, a single

slow producer thread may cause a consumer thread to

wait for it rather than process the values produced by

the other faster producer threads.The overhead caused

by the above two factors can be mitigated if each loop

for (i=START, i<END; i=i+ISTEP) {

if (OBSTACLE (i)) {

dstGrid[cal_i1(i, A[])] =

srcGrid[cal_i1’(i, A[])];

... ...

dstGrid[cal_i19(i, A[])] =

srcGrid[cal_i19’(i, A[])];

continue;

}

cal_rho (i, srcGrid, A[]);

cal_ux (i, srcGrid, A[]);

dstGrid[cal_j1(i, A[])] =

srcGrid[cal_j1’(i, A[])] + cal_v1(rho, ux);

... ...

dstGrid[cal_j19(i, A[])] =

srcGrid[cal_j19’(i, A[])] + cal_v19(rho, ux);

}

Figure 11. Loop in 470.lbm: Main dependence pattern is

A[i] = B

iteration executes long enough. However, since each iter-

ation takes only 0.55 µs, the performance improvement

is limited.

• 470.lbm implements the “Lattice Boltzmann Method”

to simulate incompressible fluids in 3D. Figure 11 shows

a simplified form of the parallelized loop. The main dif-

ference from GTC is the array update pattern which is

A[i] = B compared to A[i] = A[i] +B in GTC. While the

latter update to the same element can be done in any or-

der, the former needs to respect the original sequential

ordering. The iteration space is divided into chunks that

are assigned to each producer in a round-robin manner.

When a producer finishes an iteration chunk, it produces

an “end” token to all of its queues. Each consumer thread

starts from the queue holding values from the earliest it-

eration chunk. When it sees an “end” token, it switches to

the next queue. The sequential processing of the iteration

space using the “end” tokens guarantees the correct order

of update of each array element. This technique yields

1.3x speedup on 8 threads, with the extra “end” token

based synchronization limiting the amount of work that

is done in parallel in the consumer.

470.lbm shows an interesting array (dstGrid) access

pattern that can be used to improve performance (see

Figure 12). By using the IARD technique proposed in

[18], the iterations can be partitioned into private regions

and shared regions. Iterations in different private regions

access non-overlapping array elements and thus can be

executed concurrently, while iterations in shared regions

might access the same array element and thus need syn-

chronization. Profiling shows that the access pattern is

very stable. With this information, DOALL is applied

Min(a): minimum updated array element index in iteration a

Max(a): maximum updated array element index in iteration a

for any two iterations x and y:

if x is before y,

then Min(x) <= Min(y) and Max(x) <= Max(y)

Figure 12. Array access pattern in 470.lbm

to the private regions and DSWP+LOCALWRITE is ap-

plied to the shared region. This improves the speedup to

2.6x.

• CG from the NPB3.2-SER benchmark suite solves an

unstructured sparse linear system by the conjugate gra-

dient method [2]. The loop in CG contains the A[i] =
A[i] +B and A[i] = B dependence patterns seen in GTC

and 470.lbm respectively. Compared to the paralleliza-

tion model used in those programs, the index and value

computation stage in CG is very small and is executed

sequentially.

Both LOCALWRITE and DSWP+LOCALWRITE are

able to extract scalable speedup because there is hardly

any redundant computation. LOCALWRITE is slightly

better performing than DSWP+LOCALWRITE on 8

threads because DSWP+LOCALWRITE allocates one

thread to the small sequential producer stage leaving 7

threads for parallel execution, whereas LOCALWRITE

has all 8 threads available for parallel execution. The

problem with DSWP+LOCALWRITE can be overcome

by re-using the producer thread for parallel work after

completing the sequential work. Speedup is limited pri-

marily by the input size.

• ECLAT from MineBench is a data mining benchmark

that uses a vertical database format [13]. The paral-

lelized loop traverses a list of items and appends each

item to corresponding list(s) in the database based on

the item’s transaction number. The loop is partitioned

into two stages with the first stage calculating the item’s

transaction number and the second stage appending

the transaction to the corresponding list(s). Transac-

tions that do not share the same transaction number

can be inserted into the database concurrently. Apply-

ing DSWP+LOCALWRITE to the second stage yields

3.32x speedup. As with GTC, LOCALWRITE is limited

by the redundant computation of each item’s transaction

number and achieves only 1.87x speedup.

4.2.3 DSWP+SpecDOALL

• 197.parser is a syntactic parser of the English lan-

guage based on link grammar. The parsing of a sentence

is grammatically independent of the parsing of others.

The loop is split up into a sequential stage that reads in

the sentences and determines whether it is a command or

an actual sentence, and a speculatively DOALL stage that

does the parsing of the sentence. Values of several global

data structures need to be speculated to parse sentences

in parallel. While these structures are modified inside an

iteration, they are reset at the end of each iteration to the

same values that they had at the beginning of that iter-

ation. Branches that taken under special circumstances

are speculated to not be taken. Loop speedup is affected

primarily by the number of sentences to parse and the

variability in sentence length.

• 256.bzip2 performs data compression using the Bur-

rows-Wheeler transform. The loop is split up into three

stages: The first one reads in the input, performs an initial

compression, and then outputs blocks; the second stage

compresses the blocks in parallel; the third serializes the

blocks and outputs a bit-stream. The second stage re-

quires privatization of the block data structure and spec-

ulation to handle error conditions while compressing the

blocks. Speedup is limited by the input file’s size and the

level of compression.

5. Related Work

Many techniques have been proposed to extract thread-

level parallelism from scientific and general-purpose ap-

plications. This paper integrates many of these techniques

such as DOALL, LOCALWRITE, and SpecDOALL with

DSWP [1, 10, 15].
Data Write Affinity with Loop Index Prefetching (DWA-

LIP) is an optimization based on LOCALWRITE [9]. Like

DSWP+LOCALWRITE, DWA-LIP also eliminates redun-

dant computation in LOCALWRITE. It does this by prefetch-

ing loop indices, but since DWA-LIP takes the whole itera-

tion as a parallel unit, it misses parallelism in loops that con-

tain multiple array element updates. DSWP+LOCALWRITE

can split the updates across multiple stages and provide more

scalable and finer-grained parallelization.
Parallel Stage DSWP (PS-DSWP) is an automatic paral-

lelization technique proposed by Raman et al. to improve the

scalability of DSWP by applying DOALL to some stages of

the DSWP pipeline[16]. DSWP+ derives its insight from this

extension, and generalizes PS-DSWP by creating pipeline

stages optimized for arbitrary parallelization techniques. The

code transformation done by DSWP+DOALL is the same

as PS-DSWP. By applying techniques like LOCALWRITE

and SpecDOALL to stages with loop-carried dependences,

DSWP+ can extract more parallelism than PS-DSWP.
Loop distribution isolates parts of a loop with loop-

carried dependences from the the parts without these depen-

dences [11]. Like PS-DSWP, loop distribution is used to ex-

tract a loop to which DOALL can be applied. The technique

proposed in [23] is the speculative counterpart of loop distri-

bution + DOALL, and targets loops that are almost DOALL.

Other techniques such as LRPD, R-LRPD, and master/slave

speculative parallelization have also been proposed to par-

allelize loops [5, 17, 24]. In contrast to these approaches,

DSWP+ not only extracts the parts without loop-carried de-

pendences, but also extracts parts with dependence patterns

that are amenable to parallelization techniques other than

(speculative) DOALL. This significantly improves both ap-

plicability and performance scalability. While loop distri-

bution executes the sequential part of the loop followed by

the parallel part, DSWP+ overlaps the execution of different

parts of the original loop through pipeline parallelism.

6. Conclusion

This paper introduces the idea that DSWP is an enabling

transformation that creates opportunities for various paral-

lelization techniques to become applicable and wellperform-

ing. By splitting up a loop with complex dependence patterns

into new loops each with a dependence pattern amenable to

other parallelization techniques, DSWP uncovers opportuni-

ties to extract scalable parallelism from apparently sequen-

tial code. This paper describes in detail the code transfor-

mations that occur when DSWP+ is applied in conjunction

with DOALL, LOCALWRITE, and SpecDOALL. Since it

leverages automatic compiler techniques, the proposed par-

allelization framework can be automated in future work. An

evaluation of DSWP+ on a set of codes with complex depen-

dence patterns yielded a geomean speedup of 3.69x on up to

8 threads. This surpasses the geomean speedups of DSWP

(1.16x) or other parallel optimizations (1.81x) acting on their

own.

Acknowledgments

We thank the entire Liberty Research Group for their sup-

port and feedback during this work. Additionally, we thank

the anonymous reviewers for their insightful comments. The

authors acknowledge the support of the GSRC Focus Cen-

ter, one of five research centers funded under the Focus Cen-

ter Research Program, a Semiconductor Research Corpora-

tion program. This material is based upon work supported

by the National Science Foundation under Grant No. CCF-

0811580. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the au-

thors and do not necessarily reflect the views of the National

Science Foundation.

References

[1] R. Allen and K. Kennedy. Optimizing compilers for modern architec-

tures: A dependence-based approach. Morgan Kaufmann Publishers

Inc., 2002.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.

The NAS Parallel Benchmarks. International Journal of Supercom-

puter Applications, 5(3):63–73, Fall 1991.

[3] M. J. Bridges. The VELOCITY Compiler: Extracting Efficient Mul-

ticore Execution from Legacy Sequential Codes. PhD thesis, Depart-

ment of Computer Science, Princeton University, Princeton, New Jer-
sey, United States, November 2008.

[4] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors.

In Proceedings of the International Conference on Parallel Process-

ing, pages 836–884, August 1986.

[5] F. H. Dang, H. Yu, and L. Rauchwerger. The R-LRPD test: Specu-

lative parallelization of partially parallel loops. In IPDPS ’02: Pro-

ceedings of the 16th International Parallel and Distributed Process-

ing Symposium, page 318, 2002.

[6] J. R. B. Davies. Parallel loop constructs for multiprocessors. Mas-

ter’s thesis, Department of Computer Science, University of Illinois,

Urbana, IL, May 1981.

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-

dence graph and its use in optimization. ACM Transactions on Pro-

gramming Languages and Systems, 9:319–349, July 1987.

[8] J. Giacomoni, T. Moseley, and M. Vachharajani. FastForward for

efficient pipeline parallelism: a cache-optimized concurrent lock-free

queue. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming,

pages 43–52, New York, NY, USA, February 2008.

[9] E. Gutiérrez, O. Plata, and E. L. Zapata. Improving parallel irregular

reductions using partial array expansion. In Supercomputing ’01:

Proceedings of the 2001 ACM/IEEE conference on Supercomputing

(CDROM), pages 38–38, New York, NY, USA, 2001. ACM.

[10] H. Han and C.-W. Tseng. Improving compiler and run-time support

for irregular reductions using local writes. In LCPC ’98: Proceedings

of the 11th International Workshop on Languages and Compilers for

Parallel Computing, pages 181–196, London, UK, 1999. Springer-

Verlag.

[11] K. Kennedy and K. S. McKinley. Loop distribution with arbitrary

control flow. In Proceedings of Supercomputing, pages 407–416,

November 1990.

[12] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and

L. P. Chew. Optimistic parallelism requires abstractions. In PLDI ’07:

Proceedings of the 2007 ACM SIGPLANConference on Programming

Language Design and Implementation, pages 211–222, New York,

NY, USA, 2007. ACM.

[13] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and

A. Choudhary. Minebench: A benchmark suite for data mining
workloads. IEEEWorkload Characterization Symposium, 0:182–188,

2006.

[14] C. E. Oancea and A. Mycroft. Software thread-level speculation: an

optimistic library implementation. In IWMSE ’08: Proceedings of the

1st International Workshop on Multicore Software Engineering, pages

23–32, New York, NY, USA, 2008. ACM.

[15] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread

extraction with decoupled software pipelining. In Proceedings of the

38th Annual IEEE/ACM International Symposium on Microarchitec-

ture, pages 105–116, November 2005.

[16] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August.

Parallel-stage decoupled software pipelining. In Proceedings of the

2008 International Symposium on Code Generation and Optimiza-

tion, April 2008.

[17] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-

time parallelization of loops with privatization and reduction paral-

lelization. IEEE Transactions on Parallel and Distributed Systems,

10(2):160–180, 1999.

[18] D. E. Singh, M. J. Martin, and F. F. Rivera. Runtime characterisation

of irregular accesses applied to parallelisation of irregular reductions.

Int. J. Comput. Sci. Eng., 1(1):1–14, 2005.

[19] Standard Performance Evaluation Corporation (SPEC).

http://www.spec.org.

[20] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede

approach to thread-level speculation. ACM Transactions on Computer

Systems, 23(3):253–300, February 2005.

[21] StreamIt benchmarks.
http://compiler.lcs.mit.edu/streamit.

[22] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August. Speculative decoupled software pipelining. In Proceed-

ings of the 16th International Conference on Parallel Architectures

and Compilation Techniques, September 2007.

[23] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering

hidden loop level parallelism in sequential applications. In Proc. of

the 14th International Symposium on High-Performance Computer

Architecture, 2008.

[24] C. Zilles and G. Sohi. Master/slave speculative parallelization. In

Proceedings of the 35th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 85–96, November 2002.

