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ABSTRACT
The recent trend in the processor industry of packing multiple pro-
cessor cores in a chip has increased the importance of automatic
techniques for extracting thread level parallelism. A promising ap-
proach for extracting thread level parallelism in general purpose
applications is to apply memory alias or value speculation to break
dependences amongst threads and executes them concurrently.

In this work, we present a speculative parallelization technique
called Speculative Parallel Iteration Chunk execution (Spice) which
relies on a novel software-only value prediction mechanism. Our
value prediction technique predicts the loop live-ins of only a few
iterations of a given loop, enabling speculative threads to start from
those iterations. It also increases the probability of successful spec-
ulation by only predicting that the values will be used as live-ins in
some future iterations of the loop. These twin properties enable our
value prediction scheme to have high prediction accuracies while
exposing significant coarse-grained thread-level parallelism. Spice
has been implemented as an automatic transformation in a research
compiler. The technique results in up to 157% speedup (101% on
average) with 4 threads.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code generation,
Compilers, Optimization; C.1.4 [Processor Architectures]: Paral-
lel Architectures

General Terms
Algorithms, Performance

Keywords
Multicore architectures, automatic paralleization, speculative par-
allelization, thread level parallelism, value speculation
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1. INTRODUCTION
The emergence of multi-core architectures as the dominant com-

puting platform is accompanied by a near stagnation in the perfor-
mance of individual processor cores. Thus, single threaded appli-
cations can no longer rely on advances in process technology and
microarchitectural innovations alone to improve their performance.
On the other hand, writing multi-threaded applications is much
more complex than writing single threaded applications since it re-
quires programmers to reason about concurrent accesses to shared
data, and to insert the right amount of synchronization that ensures
correct behavior without limiting parallelism. Active research in
automatic tools to identify deadlocks, livelocks, and race condi-
tions [5, 7, 19] in multi-threaded programs is a testament to the
difficulty of this task.

An alternative approach for producing multi-threaded codes is to
use the compiler and the hardware to automatically convert single-
threaded applications into multi-threaded applications. This ap-
proach is attractive as it takes the burden of writing multi-threaded
code off the programmer, just as automatic instruction-level par-
allelism (ILP) optimizations take the burden of writing code opti-
mized for complex architectures off the programmer. While sig-
nificant progress has been made in parallelizing applications in the
scientific and numeric computing domain, the same techniques do
not seem to apply to general-purpose programs due to the complex
control flow and memory access patterns in these programs.

A promising technique to parallelize general purpose applica-
tions is thread level speculation (TLS) [8, 13, 20, 21]. TLS spec-
ulates that a future iteration of a loop, typically the next iteration,
is independent of the current iteration, and executes them in paral-
lel. The most common form of speculation used in TLS is memory
alias speculation where loads in later iterations are assumed not to
conflict with stores in the earlier iterations. If the speculation turns
out to be false, due to dependences between the iterations, the spec-
ulatively executed iterations are squashed and restarted. As long as
the mis-speculation rate is low, TLS can improve the performance
over single-threaded execution.

The alias speculation works as long as the conflict between loads
and stores in different iterations are infrequent. But if the depen-
dences between loop iterations manifest frequently, alias specula-
tion suffers from high mis-speculation rates, causing a slowdown
over single-threaded code. TLS systems typically overcome this
problem by synchronizing those store-load pairs that conflict fre-
quently. This limits the parallelism that can be exploited between
the loop iterations. An alternative approach is to apply value pre-
diction [10, 11] and speculatively execute the future iterations with
the predicted values. Several TLS techniques [4, 12, 14, 22] have
in fact proposed the use of value prediction to increase the amount
of parallelism exploited. These TLS techniques with value pre-



1 c = cm->next_cl;
2 while(c != NULL){
3 int w = c->pick_weight;
4 if (w < wm) {
5 wm = w;
6 cm = c;
7 }
8 c = c->next_cl;
9 }
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Figure 1: Value prediction example

diction typically use some value predictor originally proposed to
improve ILP. While those predictors work in some cases, we be-
lieve that better value prediction techniques tailor-made to break
inter-iteration dependences in a TLS system can be developed. We
propose a new parallelization technique that uses a predictor based
on the following two insights into value prediction for thread level
speculation.

The first insight is that, to extract thread level parallelism, it is
sufficient to predict a small subset of the values produced by a static
operation. To see this, consider the loop in Figure 1(a) from the
benchmark otter that traverses a linked list. For the sake of this
discussion, assume that the if condition in line 4 is rarely taken. In
that case, a TLS system can speculate that the read of wm in the next
iteration does not conflict with the write of wm in the current itera-
tion. It can then predict the value of c at the beginning of the next
iteration and use the predicted value of c to run that iteration con-
currently with the current iteration. But, it can also speculatively
parallelize the loop by only predicting the value of c every tenth
iteration, instead of every iteration. In that case, the TLS system
can speculatively execute chunks of 10 iterations in parallel. If the
predictions are highly accurate, then it is sufficient to predict only
as many values as the number of speculative threads. Predicting
more values does not increase the amount of TLP. This is in con-
trast to value prediction for ILP. ILP value prediction techniques
predict values of a long latency operation op to speculatively exe-
cute the dependent operations. For every dynamic instance of op
that is not predicted, the dependent operations would stall in the
pipeline, thereby reducing the ILP.

The second key insight is that the probability of predicting that
an operation will produce a particular value some time in the fu-
ture is higher than predicting that that value will be produced at
a specific time in the future. Predicting that a value will appear
some time in the future is sufficient for the purposes of extracting

TLP. To give an analogy from the stock market, the chances that
the Dow Jones index will cross 15000 exactly a year from now is
much lower than the chances that it will cross 15000 some time
within the next 2 years. To give a more concrete example, consider
Figure 1(b) which shows the linked list and how it gets modified
and accessed over time. Consider a simple predictor that predicts
that node 4 appears on the list. In this example, the prediction is
always true, even though the relative position of node 4 from the
head of the list changes over time. Thus, such a predictor will have
a higher prediction rate than a predictor that predicts that node 4
appears as the fourth element from the head of the list.

This paper proposes a speculative parallelization technique called
Spice. Spice uses a value prediction technique based on the above
two insights. For every static value that needs to be predicted, our
technique predicts only a small set of values produced by that op-
eration in a given loop invocation. It does not predict the specific
iteration in which those values will be produced. This prediction
strategy is based on the observation that loop iteration live-in val-
ues tend to repeat across loop invocations.

The paper makes the following contributions:

1. It presents a viable software-only value prediction technique
to break loop-carried dependences that can enable specula-
tive parallelization based on key insights into value predic-
tion for TLP.

2. It presents an automated speculative transformation called
Spice (speculative parallel iteration chunk execution) that uses
this value prediction methodology and a dynamic load bal-
ancing scheme to extract thread-level parallelism.

3. It presents an experimental evaluation with detailed perfor-
mance simulations of Spice-parallelized codes of applica-
tions with linked list traversals, tree traversals, and complex
control flow.

4. It describes a value profiler framework to gauge loop live-
in predictability in order to automatically identify program
loops amenable for Spice-parallelization. Profile results show
that there is good loop live-in predictability across loop invo-
cations for a wide variety of applications.

The rest of this paper is organized as follows. Section 2 uses an
example to highlight the performance potential of Spice in compar-
ison to other TLS techniques. Section 3 describes the architectural
support that would be needed to support Spice TLS. The auto-
matic Spice transformation is presented in Section 4, followed by a
quantitative evaluation in Section 5. Section 6 describes our value
profiling framework, provides a whole-application characterization
of loop live-in predictability across several benchmarks, and dis-
cusses the issues and challenges in integrating such a profiler into
an automatic transformation framework for Spice. We compare
and contrast the contributions of this paper with related work in
Section 7. Finally, Section 8 summarizes the key contributions of
this work.

2. MOTIVATION
This section provides a qualitative comparison of code generated

by existing TLS techniques, both with and without value specula-
tion, and the code generated by the Spice transformation, for the
loop in Figure 1(a).

2.1 TLS Without Value Speculation
Figure 2 shows how the loop from Figure 1(a) would be executed

by existing TLS techniques that do not employ value speculation on
two processor cores. The solid lines represent the execution of the
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code that performs the list traversal which is synchronized across
the iterations. The dotted lines represent the code corresponding to
the computation of the minimum element, and the dashed lines rep-
resent the forwarding of values from one thread to another thread.
The numbers below the lines indicate the iteration numbers. Let t1,
t2 and t3 respectively denote the latency of each of the above three
parts of the execution in an ideal execution model where there is
no variance in the execution time of these three components due
to microarchitectural effects such as cache misses and branch mis-
predictions. Let the total number of iterations of the loop be 2n.

The total time taken to execute the loop by TLS depends on the
relation between t1, t2 and t3. If t2 > t1 + 2× t3, then the com-
putation of cm and wm lies on the critical path. In that case, the
total execution time is roughly equal to n× (t1 + t2), resulting in a
2X speedup over single threaded code. On the other hand, if the
minimum computation is not on the critical path, then the commu-
nication of values from one core to another, will also be a part of the
critical path. In particular, if t2 ≤ t3, then the total execution time
becomes 2n× (t1 + t3). This results in a speedup of t1+t2

t1+t3 , which is
always less than 2, over single-threaded execution. For the exam-
ple in Fig 1, the list traversal is indeed on the critical path. This is
because of the high cache miss rate of executing the pointer chas-
ing load and also because of our assumption that the if statement
mostly evaluates to false . Thus, the expected speedup of this
loop in the ideal case is t1+t2

t1+t3 . From this discussion, it is clear that
the performance of TLS is susceptible to inter-core communication
latencies.

2.2 TLS With Value Speculation
Let us now consider the case where the TLS technique employs

value prediction to predict the value of c , eliminating the value
forwarding of c between iterations. Figure 3 shows an execution
schedule of the loop under TLS with value prediction. In the ex-
ample, the prediction of iteration 4 is shown to be wrong, causing
iteration 4 to be mis-speculated and re-executed. Let p denote the
probability that a given value prediction is correct. Assuming that
the probability of a prediction being successful is independent of
other predictions, the expected speedup is 2n(t1+t2)

(n+(1−p)n)(t1+t2) or 2
2−p .

If all the values of c are successfully predicted, then TLS will give
a 2X speedup. Successful prediction depends both on the nature
of the code that produces the values and the predictor that is used.
In this example, the values are produced by the nodes of a linked
list. In otter , between successive invocations of the loop in Fig-
ure 1(a), the minimum element found by the loop is removed from
the list and some other nodes are inserted into the list. Given this,
let us now consider various value predictors and see how successful
they would be in predicting the values of c .

• The simplest value predictor is the last value predictor that
predicts that an instruction will produce the same value pro-
duced by the immediately preceding dynamic instance of that
instruction. Obviously, such a predictor can not predict the
address of the nodes of a linked list.

• Another common predictor is the stride predictor. While this
is most suited for predicting array addresses, it can also pre-
dict linked list nodes as long as the nodes are allocated con-
tiguously in the heap and the order of the nodes seen during
the traversal matches the order in which the nodes were al-
located. But, in this example, even if the nodes are allocated
contiguously, a stride predictor can not successfully predict
all the values of c since the insertions and deletions cause the
traversal order to be different from the allocation order.

• Some TLS techniques use trace based predictors instead of
instruction based predictors. Instead of predicting a value
based on which instruction produces that value, these pre-
dictors try to exploit the correlation of values produced by
different instructions in the same trace. Marcuello et al. [14]
proposed the use of trace-based predictors for TLS. They
proposed a predictor called increment predictor which is a
trace based equivalent of a stride predictor. The traces they
use are loop iteration traces, which are unique paths taken
by the program within a loop iteration. There are two paths
in our example loop and in both these paths, the value c is
produced only once, by the same instruction. Hence, for this
example, a trace based predictor would fare no better than an
instruction based predictor.

Thus, even if value prediction is employed, it is unlikely that exist-
ing TLS techniques would significantly improve the performance
of this loop. In general, for application loops with irregular mem-
ory accesses and complex control flow, conventional value predic-
tors fail to do a good job. The next subsection describes how Spice
predicts values by memoizing the values seen during the previous
invocation of the loop to break previously hard-to-predict depen-
dences with very low mis-speculation rates.

2.3 Spice Transformation With Selective Loop
Live-in Value Speculation

Let us now see how Spice would transform the same loop. Fig-
ure 4 shows the parallel version of the loop in Figure 1 using Spice.
The example shows parallelization with two threads, but it can be
generalized to any number of threads. For the two threads case,
only one value of c has to be predicted since there is only one spec-
ulative thread. Assume that the variable predicted_c contains
that predicted value of c . Later, in our discussion on the compiler
transformation, we describe how this value could be obtained. Both
threads execute the original loop, but with some differences. In the
main non-speculative thread, we add a check at the end of each loop
iteration that checks if the current value of c equals the predicted
value, in which case the main thread sets a flag indicating a suc-
cessful speculation and exits the loop. Outside the loop, it checks if
the flag indicating successful speculation is set. If it had exited the
loop because of a successful speculation, the main thread receives
the wm and cm values from the speculative thread and computes the
minimum among the two wm s and the corresponding cm . In case
of mis-speculation, the speculative thread is squashed. In the spec-
ulated thread, the value of c is initialized predicted_c . When
it exits the loop, the speculative thread sends the cm and wm values
to the main thread.



1 c = cm->next_cl;
2 mispred = 1;
3 while(c != NULL){
4 int w = c->pick_weight;
5 if (w < wm) {
6 wm = w;
7 cm = c;
8 }
9 c = c->next_cl;

10 if(c == predicted_c) {
11 mispred = 0;
12 break;
13 }
14
15 }
16 if(!mispred){
17 receive(thread2, wm2);
18 receive(thread2, cm2);
19 if(wm2 < wm){
20 wm = wm2;
21 cm = cm2;
22 }
23 }
24 else{
25 squash_speculative_thread();
26 }

(a) Non-speculative thread (Thread 1)

1 c = predicted_c;
2 while(c != NULL){
3 int w = c->pick_weight;
4 if (w < wm) {
5 wm = w;
6 cm = c;
7 }
8 c = c->next_cl;
9 }

10 send(thread1, cm);
11 send(thread1, wm);

(b) Speculative thread (Thread 2)

Figure 4: Parallelization using Spice

t1 t2P1

P2

time

1 2 3 4

5 6 7 8

Figure 5: Execution Schedule for Spice

Figure 5 shows the execution schedule for this transformed code.
Instead of alternating the iterations across the two processor cores,
Spice splits the iteration space into two halves and executes both
the halves concurrently in two different cores. Assuming again a
probability p of successful prediction, and that the predicted value
splits the list in the middle, applying Spice results in an expected
speedup of 2

2−p . Thus, if we have a predictor that can predict just
a few values with higher accuracy, then the expected speedup of
Spice would be higher than existing TLS schemes, since Spice re-
quires fewer values to be speculated than the existing TLS schemes
to produce a given number of threads. Consider a simple value pre-
diction strategy where on every loop invocation, the value of c in
the middle of the list is remembered and used as the predicted value
in the following invocation. For the example in Figure 1(a), this
simple strategy is likely to succeed since only one node is deleted

from the list after each invocation and hence the probability of the
remembered node being removed from the list is low.

In general, given n processor cores, the loop in Figure 1(a) can
be parallelized into n parallel speculative threads by predicting
only n− 1 values of c across the entire iteration space1. Each of
these threads executes one chunk of iterations and has a low mis-
speculation rate. Each Spice thread is long-running compared to
iteration-granular TLS. Consequently, Spice TLS does not incur
frequent thread management overhead. In the following two sec-
tions, we describe the implementation details of Spice including
the required architectural support and the compiler transformation.

3. ARCHITECTURAL SUPPORT
In this section, we describe the architectural support required

to support Spice. Since Spice executes multiple threads concur-
rently, it naturally requires a multi-core architecture to execute
those threads. Since Spice employs speculation, it requires the fol-
lowing additional support:

Speculative State When a speculative thread generated by Spice
needs to be squashed due to mis-speculation, any changes to
architectural state made by the speculative thread must be un-
done. Undoing the changes to register state involves saving
and restoring some register values and discarding the rest and
can be done purely in software. But to undo the changes to
memory, special hardware support is required. Such support
is provided by hardware transactional memory [9] and mem-
ory systems for thread level speculation [8, 21] which buffer
speculative state and discard it on mis-speculation. When the
program reaches a point where a speculative thread can not
be squashed anymore, the buffered state is committed into
the main memory and the state can no longer be rolled back.
Our architectural model includes ISA support to enter into
a speculative state, commit the speculative state and discard
the buffered state.

Conflict Detection Like other TLS techniques, Spice can use mem-
ory alias speculation in addition to value speculation. This
requires hardware support to detect if a store and load ac-
tually conflict during execution. Many existing TLS sys-
tems [8, 21] provide such hardware support.

Remote resteer When a thread is found to have mis-speculated,
the thread that detects the mis-speculation forces it to exe-
cute the recovery code. To support this, we propose a remote
resteer mechanism that allows one thread to transfer control
in another thread. We currently support it using a special
instruction called resteer.

4. COMPILER IMPLEMENTATION
In this section, we describe how Spice is implemented as an au-

tomatic compiler transformation. Algorithm 1 outlines the Spice
transformation. The algorithm takes the loop to be parallelized and
the number of threads to create as its inputs. The algorithm first
computes the set of live-ins that require value prediction. This set
is obtained by first computing the set of all inter-iteration live-ins.
Those live-ins in this set that can be subjected to reduction trans-
formations [1] such as sum reduction or MIN/MAX reduction do
not require prediction. Value prediction is applied to the rest of
the loop carried live-ins. After obtaining this set, the compiler then
performs the following steps:
1A reduction transformation can remove the loop-carried depen-
dence for wm .



Algorithm 1 Spice transformation
1: Input: Loop L, number of threads t
2: Compute inter-iteration live-ins Liveins
3: Compute reduction candidates Reductions
4: Live-ins to be speculated S = Liveins−Reductions
5: Create t −1 copies of the body of L to form t −1 procedures
6: Insert communication for non-speculative loop live-ins and

live-outs
7: Generate code to initialize speculative live-ins S
8: Generate recovery code in speculative threads
9: Insert code for mis-speculation detection and recovery

10: Insert value predictor

Thread creation: The compiler replicates the loop t − 1 times
and places the loop copies in separate procedures. Each of these
procedures is executed in a separate thread. To avoid spawn-
ing these threads before every invocation of the loop, threads
are pre-allocated to the cores at the entry to the main thread.
Code is inserted to the main thread loop’s preheader to generate
a new_invocation token to all the threads before each loop in-
vocation. All other threads wait on this new_invocation token
and start the loop when they receive this token.

Communication of live-ins and live-outs: The compiler identi-
fies the set of register live-ins to the loop that needs to be communi-
cated to the speculative threads. All live-ins except the speculative
live-in set S and the set of accumulators are communicated. Vari-
ables used as accumulators are not communicated since they have
to be initialized to 0 in the speculative threads.

Value speculation: The compiler creates a global data structure
called the speculated values array of size (t−1)×m, where m is the
number of live-in values that need to be speculated. The compiler
initializes the speculative live-ins of the loop in thread i with the
values from the (i− 1)th row of the speculated values array. Later
we discuss how the contents of this array are obtained.

Recovery code generation: The compiler creates a recovery
block for each speculative thread and generates code to perform
the following actions:

1. Restore machine specific registers such as the stack pointer
and the flag register. Registers used within the loop that is
parallelized are simply discarded.

2. Rollback the memory state if the loop contains stores.

3. Inform the main thread that recovery is complete.

4. Exit the recovery block and jump to the program point where
it waits for the main thread to send a token that denotes the
beginning of the next invocation

Mis-speculation detection and recovery: Mis-speculation de-
tection is done in a distributed fashion. We first look at mis-
speculation detection when there is one speculative thread (a total
of 2 threads) and then generalize it for t threads. Let S be the set
of all the loop live-in registers that need speculation. At the be-
ginning of each loop iteration, the non-speculative thread 1, which
is also referred to as the main thread, compares its values of the
registers in S with the values used to initialize those live-in regis-
ters in thread 2. If all the values match at the beginning of some
iteration j, it implies that thread 2 started its execution from iter-
ation j + 1 of the loop with correctly speculated live-in values. In
that case, thread 1 stops executing the loop at the end of iteration
j and waits for thread 2 to communicate its live-outs at the end of

the loop. On the other hand, if the values never match, thread 1
will eventually exit the loop by taking the original loop exit branch.
Since it has executed all the iterations of the loop and exited the
loop normally, it can conclude that thread 2 had mis-speculated. In
that case it executes a resteer instruction to redirect thread 2 to
its mis-speculation recovery code.

Mis-speculation detection and recovery can be generalized for t
threads. Thread i is responsible for detecting whether thread i + 1
has mis-speculated in a loop invocation. The compiler generates
code in thread i at the beginning of each loop iteration to com-
pare the values of all the registers in set S with the initial values
of thread (i + 1)’s live-ins. Thread (i + 1)’s initial live-in values
are loaded from the ith row of the speculated values array. It then
inserts code that sets a flag indicating successful speculation fol-
lowed by a branch to exit the loop, if the values match. Outside the
loop, code to check this flag and take the necessary recovery action
is generated.

To recover from mis-speculation, the compiler generates code to
perform the following actions. The thread detecting mis-speculation,
if itself is not the main thread, communicates this information to the
main thread. The main thread issues resteer instructions to all
the mis-speculated threads that make these threads execute their re-
covery code. It then waits for an acknowledgment token from each
of them that indicates that they have successfully rolled back the
memory state. Finally, after all the tokens have been received, the
main thread commits the current memory state.

Mis-speculation detection is illustrated in Figure 6. Figure 6(a)
shows the traversal of a list that has 8 nodes. Three threads par-
ticipate in the traversal of this list. The first thread traverses the
nodes enclosed by the solid box, the second thread traverses the
nodes enclosed by the dotted box and the nodes of the last thread
are enclosed by the dashed box. SVA denotes the speculated values
array whose elements contain the addresses of list nodes which are
live-in to the list. Assume that after the invocation, node 4 is re-
moved from the list as in Figure 6(b). The SVA entry still points to
the removed node. When the loop is invoked again, the first thread
traverses the entire list since it never finds the node whose address
is in the SVA during its traversal as the node has been removed
from the list. The second thread starts from the removed node and
depending on the what its next pointer points to, will either stop the
traversal, loop forever, or cause memory faults by accessing some
invalid memory location. Thread 3 starts from node 6 and traverses
till the end of the list, repeating the work done by thread 1. When
thread 1 reaches the end of the list, it concludes that thread 2 has
mis-speculated and squashes threads 2 and 3. Note that if thread
1 compares its live-in registers with the speculated live-ins of both
threads 2 and 3, then it needs to squash only thread 2 and thread 3’s
computation would not have been wasted. But this increases the
overhead in thread 1 due to the additional comparisons and hence
in our current implementation, the compiler limits the comparisons
to only one set of live-ins. If thread 2 goes into an infinite loop, the
resteer issued by thread 1 will redirect it to the correct recovery
code. The recovery code rolls back its memory state to undo any
changes the thread has done to its memory state.

Value predictor insertion
The compiler inserts into the threads a value predictor that fills the
contents of the speculated values array on every loop invocation.
A trivial value prediction strategy is to memoize or remember the
live-ins from t − 1 different iterations during the first invocation.
These t − 1 set of live-ins can be used as the predicted values in
all subsequent invocations. This approach does not adapt to change
in program behavior and hence does not work in many cases. For
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Figure 6: List Traversal Example

instance if the values that are memoized are addresses of the nodes
nodes of a linked list, and if a memoized node is removed from the
list, all subsequent invocations will mis-speculate even if the list
elements hardly change subsequently.

A better approach is to make the predictor memoize the values
not just once, but on every invocation of the loop. Values memo-
ized in one invocation are used as a prediction only in the next in-
vocation. This approach adapts itself better to changes in the loop
behavior. Moreover, this also allows dynamic load balancing since
the work done by the speculative threads depends on the iterations
whose live-in values are predicted.

The value predictor has two components. The first component
of the value predictor that writes to the speculated values array is
distributed across all the threads. To implement this component,
the compiler first creates a set of data structures used by the pre-
dictor. A list called svai is created per thread. The entries of this
array for thread i contain the indices to the speculated values array
(sva ) to which thread i should write to. Another per-thread list
called svat contains thresholds that determine which values are
memoized. The compiler also creates an array called work whose
entries contain the amount of work done by each thread. This is
used in dynamic load balancing.

Algorithm 2 Spice value prediction
my-work = 0
for each iteration of the loop do

my-work = my-work + 1
if my-work > svat[list-index] then

sva[svai[list-index]] = loop carried live-ins in current itera-
tion
list-index = list-index+1

end if
end for
work[my-thread-id] = my-work

The compiler emits the code corresponding to Algorithm 2 in
each thread to memoize the values. Each thread maintains a counter
my-work that is a measure of the amount of work done by that
thread. In our current implementation, the threads increment the
counter once per loop iteration. A more accurate measure of the
work done could be obtained by reading the relevant hardware coun-
ters periodically. If the work done so far exceeds the threshold
found in the head of the svat list for this thread, then the cur-
rent loop live-in values are recorded in the sva array. The index
to the sva array location to which the value has to be written is
given by the value at the head of the svai list. After writing to
the sva array, the head pointers of both the lists are incremented.
After exiting the loop, the thread writes the total work done in that
invocation to the global work array.

The other component of the value predictor is centrally imple-
mented in a separate procedure. This component is executed at the

Core Functional Units: 6 issue, 6 ALU, 4 memory, 2 FP, 3 branch
L1I Cache: 1 cycle, 16 KB, 4-way, 64B lines
L1D Cache: 1 cycle, 16 KB, 4-way, 64B lines, write-through
L2 Cache: 5,7,9 cycles, 256KB, 8-way, 128B lines, write-back
Maximum Outstanding Loads: 16

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines, write-back
Main Memory Latency: 141 cycles
Coherence Snoop-based, write-invalidate protocol
L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction

bus with round robin arbitration

Table 1: Machine details.

end of each loop invocation. It collects the amount of work done by
each thread in that invocation and decides on the iterations of the
next loop invocation whose live-in values have to be memoized.
Depending on which threads execute those iterations, it generates
the entries of the svai list. But how the iterations will be parti-
tioned among the threads in the next invocation can not be decided
a priori at the end of current invocation since it depends on the pro-
gram state. Hence, the predictor makes the following assumptions:

1. In future invocations, the total amount of work done will re-
main the same.

2. In the immediately following invocation, the three threads
will execute the same amount of work.

These assumptions enable the predictor to orchestrate the mem-
oization in a way that results in load balancing. This is best illus-
trated with an example. Consider the case where there are three
threads where the work done by each thread in a particular invoca-
tion are 10, 1 and 1 units respectively. Based on the first assump-
tion, the predictor wants to collect the live-ins when the total work
done in a sequential execution are 4 and 8. It then uses the second
assumption to determine which threads will have to write the val-
ues. In this example, the work done by the first thread in the next
invocation is assumed to be 8 and so both the rows of the sva are
written to by the first thread after iterations 4 and 8 and the other
two threads do not write into the sva . Hence the svat list of the
first thread is set to [4, 8] and its svai list is set to [0,1]. For the
other two threads the head element of svat is set to ∞ so that they
would never write to the sva array.

5. EXPERIMENTAL EVALUATION
We now describe our experimental evaluation of Spice. We use

a cycle accurate multi-core simulator to evaluate the performance
benefits of using Spice. Our base model is a 4 core Itanium 2 CMP
model modeled using the Liberty simulation environment (LSE).
The architectural details of each core in our model are given in
Table 1. To support the remote resteer mechanism, we make the
resteer instruction take a program address to which the control
is transferred in a different core. This could also be implemented
through an OS call that sends a signal to the remote thread. While



Benchmark Description Loop Hotness
ks Kernighan-Lin graph

partitioning
FindMaxGpAndSwap
(inner loop)

98%

otter theorem prover for
first-order logic

find_lightest_cl 20%

181.mcf vehicle scheduling refresh_potential 30%
458.sjeng chess software std_eval 26%

Table 2: Benchmark Details
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Figure 7: Spice Results

the cores have the ability to buffer memory state to enable rollback
of the speculative state, our architecture simulator does not sup-
port detection of conflicts in hardware. This restricts the loops to
which we can apply the transformation. The set of benchmarks we
use to evaluate the technique is given in Table 2. These loops are
chosen from a set of loops that are found, by manual inspection of
the source code, to be good candidates for this technique but are
not DOALL. From that set, we removed loops that do not execute
for a significant fraction of the program’s execution and those that
require memory conflict detection. Section 6 describes a profiling
framework that can be used to automate the above process of deter-
mining the loops to which Spice can be applied.

The program is first compiled to a low level intermediate repre-
sentation. Classical optimizations are applied to this low level code
before applying the Spice transformation. Translation to IA-64 as-
sembly is followed by another round of classical optimizations,
scheduling, register allocation and a final scheduling phase. The
results reported are in terms of loop speedup over single threaded
binary, which is subjected to the same sequence of optimization
passes except Spice. Except for the loop being optimized, the rest
of the application remains unchanged. Consequently, detailed per-
formance simulation is done only for the loops being optimized.
The caches and branch predictors are kept warm while the rest of
the application is executed on a fast-forward mode.

Figure 7 shows the speedups obtained on these 4 loops. The
speedup numbers are shown for both the 2 threads and the 4 threads
cases. The speedups range from 24% in 458.sjeng with 2 threads
to as high as 157% on the loop in ks with 4 threads. The whole
program speedup can be obtained from the loop speedup and the
fraction of time spent on the loop in the original program. There
are several factors that prevent the actual speedup from being in
line with the ideal linear speedup expected from threads executing
in a DOALL fashion:

Mis-speculations 458.sjeng is the only benchmark that suffers
heavily due to mis-speculation. Around 25% of the invo-
cations mis-speculate in this benchmark. In the other three
loops, the mis-speculation rate is less than 1%.

Load imbalance The number of iterations per invocation varies in
otter due to insertions to the linked list. Load balancing plays
an important role in speeding up the loop’s execution. Since
our distributed re-memoization strategy does not equally di-
vide the work among the different cores, it results in some
slowdown compared to an ideal case where the work among
the threads is equally divided. In 458.sjeng , even though
the variance in the number of iterations per invocation is not
very high, the actual number of instructions executed per it-
eration varies across iterations. A better metric for load bal-
ancing than just iteration counts would improve the speedup.
Load balancing is also an issue in 181.mcf due to the vari-
ability in the number of iterations of the inner loop per outer
loop iteration.

Speculation overhead Even when there is no mis-speculation,
there is an overhead in checking for mis-speculation every
iteration. In otter , the time to execute the loop body per
iteration is low and hence the overhead, as a fraction of use-
ful execution time, is high. In 458.sjeng , the overhead
is high because there are 8 distinct live-in values that are
compared with the memoized values of the next thread and
ANDed together to determine whether the speculation is suc-
cessful.

Other overheads The main thread has to communicate live-in val-
ues that are defined outside the loop to all the other threads,
collect all live-out values and perform operations such as re-
ductions at the end of each invocation. This overhead is typ-
ically low as it is paid only once per invocation. However,
certain early invocations of the otter loop have small trip
count causing this overhead to become a significant perfor-
mance factor.

The results show that the proposed technique is a viable paral-
lelization technique for certain classes of loops. While the above
parallelization opportunities were manually identified to the com-
piler, the next section presents a value profiling framework which
can be used to profile applications for loop live-in predictability
across loop invocations and enable the compiler to automatically
identify opportunities.

6. VALUE PROFILER
This section describes a generic value profiling framework to

characterize the predictability of loop live-in values across loop in-
vocations. This characterization will enable us to understand the
limits and the potential of Spice. Practical issues that must be over-
come to enable the use of this profiling framework for automatic
identification of loops for Spice-parallelization are also discussed.

The profiler takes a program in low level IR, and identifies the set
of loops whose loop-carried live-ins are predictable. The profiler
consists of two components: an instrumenter and an analyzer. We
now describe these two components in detail.

6.1 Instrumenter
The first step of the instrumentation process is to identify the set

of loops that are candidates for value profiling. Only loops that ex-
ecute for more than 0.5% of the total execution time, as determined
by the dynamic instruction count, and are not DOALL-able, are



considered for value profiling. For these loops, the instrumenter
identifies the set of values that are live-in across loop iterations.
The instrumenter then further trims this set as described below.

Reductions
It first identifies the set of operations that are candidates for reduc-
tion transformations [1]. For instance, if the loop has an accumu-
lator variable sum which is incremented by the statement sum =
sum + A[i] , then the variable sum is live-in at the loop header.
But this does not prevent the loop from being parallelized if sum
is not read or written anywhere else in the loop, since the parallel
threads can independently compute the value of sum , and finally,
after all the threads have completed their executions, add the values
to get sum . Hence this live-in can be removed from the set. Sim-
ilarly live-ins used to compute other associative operations such
as multiplication, computation of minimum or maximum of an ar-
ray, are removed from the set. Removing such loop-carried depen-
dences, which can be handled in other ways, is important to obtain
meaningful results from the profiler.

Low Frequency Memory Dependences
If the program on which the instrumenter is applied has memory
profiling annotations then the instrumenter can use the memory
conflict frequency information to exclude loop live-ins created by
low frequency memory dependences from the corresponding loop’s
live-in set. Any resulting Spice parallelization will then need run-
time memory conflict detection to handle any memory dependence
violations caused by one of these excluded loop live-ins.

The instrumenter then instruments the program to record the set
of loop carried live-ins for the loops under consideration. For each
loop, an array is allocated whose size is set to the cardinality of the
loop carried live-in set. At the entry to the loop, the set of regis-
ter live-ins are stored at distinct locations of this array. For each
memory live-in that loads a value into a register r , the instrumenter
inserts the code to store the register r into the array after the load
operation.

At the loop preheader, the instrumenter inserts a call to an an-
alyzer method new_invocation that informs the analyzer the
start of a new invocation of a loop which is uniquely identified by
the argument to the method. At the end of the loop iteration, before
the backward branch to the header of the loop, the instrumenter in-
serts a call to an analysis routine record_values passing the
array containing the live-ins for that loop. Later we describe how
the analyzer processes this array. Finally, the instrumenter inserts
a call to an analyzer method exit_program to inform the ana-
lyzer that the program is going to exit making the analyzer output
its analysis.

Loads that are contained within inner loops pose a problem dur-
ing instrumentation. For a given iteration of the outer loop, a load
in an inner loop can get executed more than once. However, only
the value produced by the first dynamic instance of the load in the
outer loop execution is considered loop-carried with respect to the
outer loop and so only that value needs to be profiled. This can be
achieved by associating a guard variable for each such load. A load
is profiled only if the associated guard is true. The instrumenter en-
sures that the guard is set to true only for the first dynamic instance
of that load in an outer loop iteration

6.2 Analyzer
The analyzer processes the set of live-in values in each loop it-

eration to determine if the live-ins of the loop exhibit predictabil-
ity across invocations. For each loop L, the profiler associates a
probability P(L) and the invocations of L are sampled with that

probability. Sampling is done to reduce the profiler overhead. For
each sampled invocation, the analyzer gets the set of live-in values
every iteration through the call to record_values method. It
computes a signature s of the live-in values. All such signatures
in an invocation are added to a set S. In the following invocation,
the analyzer again computes the signature s of the live-in set and
searches the signature set S to see if the signature s is found. It then
computes the fraction of loop iterations f in which the signature is
found in S. If f is above some threshold t, the analyzer considers
the loop invocation to be predictable.

6.3 Predictability of Values
Figure 8 summarizes the results from the profiler on a set of

benchmarks from the SPEC integer suites, the Mediabench suite
and a few other applications. We use a threshold of 0.5 to deter-
mine if a loop invocation is predictable. In other words, a loop in-
vocation is considered predictable if the live-ins of more than half
its iterations match live-ins from the previous invocation. We then
classify each loop into one of four predictability bins based on what
percentage of its invocations are predictable: low (1-25%), aver-
age (26-50%), good (51-75%), and high (76-100%). The number
of loops in each benchmark that fall under each of these bins is
shown in Figure 8. The loop counts are normalized to 100. Miss-
ing bars for benchmarks indicate that none of the invocations in any
of the loops show predictability. The above figure indicates that in
many of the applications, a significant fraction of their dynamic
loop invocations show good to high predictability. We expect that
a good number of these loops will benefit from Spice TLS.

As mentioned in Section 5, while the Spice transformation has
been automated in our research compiler, the specific paralleliza-
tion opportunities themselves had to be manually identified to the
compiler. The use of the above profiler output to automatically de-
tect opportunities for Spice-parallelization was precluded due to a
few missing pieces in the automation process. In particular, the
predictability values returned by the value profiler will have to be
taken into account in conjunction with other information such as
the structure of the loop nest tree and the cumulative execution
weight, the total number of invocations, and the number of itera-
tions per invocation of each node in the loop nest tree. Further-
more, if both outer and inner loops of a loop nest have desirable
execution and value profile characteristics, then the compiler has
to use some heuristic to decide what the right granularity of Spice-
parallelization is. Outer loops typically execute for many iterations
and hence, when Spice-parallelized, can yield significant perfor-
mance improvements. On the flip side, if the outer loop executes
for very few invocations, the fraction of invocations that are suc-
cessfully parallelized with good load balancing could be low. Fi-
nally, the absence of the hardware for memory conflict detection
precludes the technique from being applied to loops with poten-
tial inter-iteration load store conflicts. We are currently working on
formulating and incorporating these heuristics in our compiler to
evaluate the speedup potential of Spice across entire applications.

7. RELATED WORK
Lipasti [10, 11] showed that data values produced by instruc-

tions during program execution show a lot of predictability and
proposed the use of value predictors to exploit this predictability.
In our work, we employ value prediction to only a few selected dy-
namic instances of a static operation. Calder et al. [2] also proposed
a technique called selective value prediction. While they propose
instruction filtering mechanisms to determine which instructions
write into the value prediction table in a uniprocessor, ours is a
purely software based value prediction with the goal of extracting
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Figure 8: Value predictability of loops in applications. Each loop is placed into 4 predictability bins (low, average, good and high)
and the percentage of loops in each bin is shown.

thread level parallelism. Marcuello et al. [14] proposed the use of
value prediction for speculative multi-threaded architectures. They
investigated both instruction based predictors and trace based pre-
dictors, in which the predictor uses the loop iteration trace as the
prediction context. Steffan et al. [22] propose the use of value pre-
diction as part of a suite of techniques to improve value communi-
cation in thread level speculation. They use a hybrid predictor that
chooses between a stride predictor and a context based predictor.
Cintra and Torellas [4] also propose value prediction as a mecha-
nism to improve TLS. They use a simple silent store predictor that
predicts the value of a load to be the last value written to that lo-
cation in the main memory. Liu et al [12] predicts only the values
of variables that look like induction variables. Oplinger [15] also
incorporates value prediction in TLS design, with a particular focus
on function return values. Our work focuses on a compiler based
technique to predict a few values with high accuracy. Zilles [23]
proposed Master/Slave speculative parallelization(MSSP), which is
a speculative multi-threading technique that uses value speculation.
The prediction in MSSP is made by a distilled program, which ex-
ecutes the speculative backward slice of the loop live-ins. Our soft-
ware value predictor predicts based on values seen in the past and
does not have to execute a separate thread for prediction.

Some TLS techniques [3, 4, 16, 17] have also proposed the use of
iteration chunking. These chunks are iterations of fixed size, while
in our case the number of chunks equals the number of processor
cores and the chunk size is determined at runtime by the load bal-
ancing algorithm. The LRPD test [18] and the R-LRPD test [6] are

also speculative parallelization techniques that chunk the iteration
space, but they use memory dependence speculation and not value
speculation.

8. CONCLUSION
This paper presented a new speculative parallelization technique

called Spice that uses a novel value prediction mechanism for thread
level parallelism. The value prediction mechanism is based on two
new insights on the differences between value speculation for ILP
and TLP. The highly accurate and targeted value prediction is ac-
complished by the compiler without any support from the hard-
ware. The paper described in detail the algorithms, compiler im-
plementation and the hardware support required to automatically
apply Spice. We evaluated Spice on a set of 4 loops from general-
purpose applications with complex control flow and memory access
patterns. Spice shows up to 157% (101% on average) speedup on
the set of loops to which it is applied. We also presented a value
profiler which demonstrates that the kind of value predictability
exploited by Spice is present in many benchmarks, indicating the
wider applicability of Spice.
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