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ABSTRACT
In recent years, the microprocessor industry has embraced chip
multiprocessors (CMPs), also known as multi-core architectures,
as the dominant design paradigm. For existing and new applica-
tions to make effective use of CMPs, it is desirable that compilers
automatically extract thread-level parallelism from single-threaded
applications. DOALL is a popular automatic technique for loop-
level parallelization employed successfully in the domains of scien-
tific and numeric computing. While DOALL generally scales well
with the number of iterations of the loop, its applicability is lim-
ited by the presence of loop-carried dependences. A parallelization
technique with greater applicability is decoupled software pipelin-
ing (DSWP), which parallelizes loops even in the presence of loop-
carried dependences. However, the scalability of DSWP is limited
by the size of the loop body and the number of recurrences it con-
tains, which are usually smaller than the loop iteration count.

This work proposes a novel non-speculative compiler paralleliza-
tion technique called parallel-stage decoupled software pipelining
(PS-DSWP). The goal of PS-DSWP is to combine the applicabil-
ity of DSWP with the scalability of DOALL parallelization. A key
insight of PS-DSWP is that, after isolating the recurrences in their
own stages in DSWP, portions of the loop suitable for DOALL par-
allelization may be exposed. PS-DSWP extends DSWP to bene-
fit from these opportunities, utilizing multiple threads to execute
the same stage of a DSWPed loop in parallel. This paper de-
scribes the PS-DSWP transformation in detail and discusses its im-
plementation in a research compiler. PS-DSWP produces an aver-
age speedup of 114% (up to a maximum of 155%) with 6 threads
on loops from a set of 5 applications. Our experiments also demon-
strate that PS-DSWP achieves better scalability with the number of
threads than DSWP.
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1. INTRODUCTION
For years, a steadily increasing clock speed and uniprocessor mi-

croarchitectural improvements could be relied upon to consistently
deliver increased performance for a wide range of applications. Re-
cently, however, this approach has faltered. Meanwhile, the expo-
nential growth in transistor count remains strong, leading major
microprocessor manufacturers to add value by producing chips that
contain multiple processors. Unfortunately, the presence of multi-
ple processors only results in better performance for programs with
multiple threads of execution.

While the task of producing multi-threaded code could be left to
the programmer, there are several disadvantages to this approach.
First, writing multi-threaded codes is inherently more difficult than
writing single-threaded codes. Multi-threaded programming re-
quires programmers to reason about concurrent accesses to shared
data and to insert sufficient synchronization to ensure proper be-
havior while still permitting enough parallelism to improve perfor-
mance. Active research in automatic tools to identify deadlocks,
livelocks, and race conditions [4, 8, 18] in multi-threaded pro-
grams is a testament to the difficulty of this task. Second, there are
many existing legacy applications that are single-threaded. Even
when the source code for these applications is available, it would
take enormous programming effort to translate these programs into
well-performing parallel versions.

An alternative approach for producing multi-threaded codes is to
let the compiler automatically convert single-threaded applications
into multi-threaded ones. This approach is attractive as it takes
the burden of writing multi-threaded code off the programmer, just
as instruction-level parallelism (ILP) optimizations take the bur-
den of targeting complex architectures off the programmer. Com-
piler techniques for automatic extraction of multiple threads have
been studied extensively in the domain of scientific and numeric
applications. In these domains, the identification and paralleliza-
tion of DOALL loops [1] have contributed greatly to the extraction
of scalable thread-level parallelism. A loop is called DOALL if all
of its iterations, in any given invocation, can be executed concur-
rently. We use the term iteration-level parallelism to denote the
parallelism exhibited by DOALL.

Unfortunately, DOALL-style parallelism has limited applicabil-
ity because of inter-iteration (or loop-carried) dependences. These



p = list;
sum = 0;

A: while (p != NULL) {
B: id = p->id;
C: if (!visited[id]) {
D: visited[id] = true;
E: q = p->inner_list;
F: while (q != NULL && !q->flag)
G: q = q->next;
H: if (q != NULL)
I: sum += p->value;

}
J: p = p->next;

}
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Figure 1: (a) Example in C code, (b) PDG, (c) DAGSCC for PDG.

dependences are common in most application codes outside the sci-
entific and data-parallel arenas. Even in the domain of scientific
applications, it is common for DOALL parallelism not to be di-
rectly available without employing other transformations such as
loop distribution and loop skewing [1]. In many cases, DOALL
parallelism is not possible even after these transformations. In
such cases, other parallelization techniques that allow loop-carried
dependences might be applicable, including DOACROSS [5] and
DOPIPE [7]. However, these techniques are generally restricted
to codes with very analyzable, array-based memory accesses, and
they do not handle arbitrary control flow.

Recently, a new multi-threading technique called Decoupled
Software Pipelining (DSWP) was proposed [13]. DSWP extracts
pipelined parallelism even from codes with irregular, pointer-based
memory accesses and arbitrary control flow. These abilities enable
DSWP to extract threads from general-purpose applications [13].
In essence, DSWP operates by partitioning the instructions of a
loop among a sequence of loops. The new loops are concurrently
executed on different threads, with dependences among them flow-
ing in a single direction, thus forming a pipeline of threads. Since
the threads form a pipeline, DSWP is not affected by increases in
the inter-processor communication latency.

Although applicable to a larger body of codes, DSWP misses
some parallelization opportunities because each stage of the pipeline
is sequentially executed in a single thread. In other words, after
each recurrence in the loop is isolated in an individual pipeline
stage, some stages may be free of loop-carried dependences, and
thus can be parallelized in a DOALL fashion to exploit iteration-
level parallelism.

In this paper, we propose Parallel-Stage DSWP (PS-DSWP), a
technique to obtain pipeline parallelism with some stages executed
in a DOALL fashion, and present the algorithms for applying the
PS-DSWP transformation. This technique has been fully imple-
mented in the VELOCITY multi-threading research compiler [22],
and it has been used to parallelize several loops with complex mem-
ory patterns and control flow. The performance results indicate
the potential of this technique to exploit iteration-level parallelism

in loops that cannot be parallelized as DOALL. Finally, our ex-
periments present a thorough comparison between PS-DSWP and
DSWP, thus quantifying the benefits of exploiting iteration-level
parallelism in combination with pipelined parallelism.

2. BACKGROUND AND MOTIVATION
This section first gives a more detailed background on the DSWP

transformation [13], and then presents an example illustrating the
benefits of exploiting parallel stages. We use the C code example
in Figure 1(a) to illustrate how DSWP operates. This example con-
tains a doubly nested loop that performs some computation on a list
of lists, using linked data structures. The use of such pointer-based
data structures, while common in general-purpose codes, usually
renders other non-speculative parallelization techniques inapplica-
ble.

DSWP uses a Program Dependence Graph (PDG) [9] represen-
tation of the loop, containing both data and control dependences.
Figure 1(b) illustrates the PDG for Figure 1(a). In order to parti-
tion the instructions of the loop, DSWP first groups the instructions
into strongly connected components (SCCs), which precisely iden-
tify the loop’s dependence recurrences. The reason for this is that,
in order to form a pipeline, the instructions in the same SCC must
be assigned to the same thread. The PDG with each of its SCCs
coalesced into a single node is called DAGSCC, and Figure 1(c) il-
lustrates the DAGSCC for Figure 1(b). Theoretically, DSWP can
assign each SCC in the DAGSCC to a different thread. In prac-
tice, however, the efficiency of the pipeline will be bounded by
the slowest stage. In other words, the time it takes to execute the
slowest SCC limits the speedup achievable by DSWP. For this
reason, given a limited number of threads that can simultaneously
execute in the target processor, the DSWP transformation clusters
the nodes in the DAGSCC , so that all instructions in the same cluster
are assigned to the same thread. DSWP employs a load-balancing
heuristic to perform this clustering, also making sure that the de-
pendences among the clusters form no cycle.

As noted above, the SCCs in the PDG play an important role for
DSWP since, in order to form a pipeline, they must not be parti-



tioned. As a consequence, the maximum number of threads that
DSWP can extract is limited by the number of SCCs. For example,
for the loop in Figure 1, DSWP can extract a maximum of 7 threads.
In practice, however, the performance of this loop is limited by the
execution time of the SCC containing the inner loop formed by
statements F and G (assuming the inner loop iterates many times).
Therefore, DSWP clusters this DAGSCC into 3 threads, correspond-
ing to these sets of statements: {A, B, C, D, E, J}, {F, G}, and {H,
I}. Even with this clustering, the performance of this loop will be
limited by the thread containing F and G (the SCC FG).

A key observation is that, in Figure 1, even though FG cannot be
partitioned by DSWP, it can be replicated, so that multiple threads
concurrently execute this SCC for different iterations of the outer
loop. This is possible because this SCC is created by dependences
carried by the inner loop only, and not by the outer loop to which
DSWP is applied. In other words, only dependences carried by the
loop being DSWPed prevent the creation of parallel stages. In the
example in Figure 1, there are dependences carried by the outer
loop in the SCCs AJ, CD, and I. Although the first two of these
cannot be easily eliminated, the third SCC (I) can be subjected
to sum reduction [1], allowing it to be replicated. With that, PS-
DSWP can partition the DAGSCC in Figure 1(c) into two stages: a
first, sequential stage containing SCCs AJ, B, and CD, and a sec-
ond, parallel stage containing the remaining SCCs. This parallel
stage can be replicated to concurrently execute in as many threads
as desired, with the performance limited only by the number of
iterations of the outer loop and the slowest stage in the pipeline.
Figure 2 sketches the code that PS-DSWP generates for the loop
in Figure 1(a), with two threads executing the parallel stage. While
not shown in this figure, the actual transformation generates code to
communicate the control and data dependences appropriately, and
to add up the sum reduction after the loop exit. The next section
describes the algorithms and techniques to enable PS-DSWP.
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Figure 2: PS-DSWP applied to the loop from Figure 1(a).

We note that, although loop distribution [1] is usually used to
expose iteration-level parallelism in the presence of loop-carried
dependences, it cannot be directly applied to uncounted loops as
the one in Figure 1. Furthermore, PS-DSWP has other advantages
over loop distribution, as described later in Section 6.

3. PS-DSWP TRANSFORMATION
Algorithm 1 shows the pseudo-code for the PS-DSWP technique.

This is based on the algorithm for the DSWP transformation pro-
posed by Ottoni et al. [13]. It takes as input L, the loop to be opti-
mized, and modifies it as a side-effect. The following subsections
describe each step of the algorithm in detail, focusing on the ex-

Algorithm 1 PS-DSWP algorithm
PS-DSWP (loop L)

(1) G← build_dependence_graph(L)
(2) SCCs← find_strongly_connected_components(G)
(3) if |SCCs| = 1 then return
(4) DAGSCC ← coalesce_SCCs(G,SCCs)
(5) A ← assign_threads(DAGSCC,L)
(6) if |A | = 1 then return
(7) generate_code(L,A)

tensions to the DSWP algorithm that enable the creation of parallel
stages. The loop in Figure 1 is used as a running example to illus-
trate the steps of the algorithm.

3.1 Building the Program Dependence Graph
The Program Dependence Graph (PDG) [9] is used to represent

the loop to be parallelized. In our compiler, the PDG is built from
a low-level representation of the loop. The nodes of the graph rep-
resent operations contained in the loop. An edge u→ v indicates
that the operation represented by v is dependent on the operation
represented by u. A dependence arc can represent either a data de-
pendence through a register1, a data dependence through memory,
or a control dependence. For registers, only true dependences are
represented in the PDG [13]. Since iteration-level parallelism can
be extracted only in the absence of loop-carried dependences, the
dependence arcs in the PDG are annotated with a flag indicating
whether the dependence is loop-carried or not. Loop-carried de-
pendences are identified as follows:

• For data dependences through memory, if array dependence
analysis [1] could be applied, it is used to determine if the
dependences are loop carried. Otherwise, a dependence has
to be conservatively treated as loop-carried.

• For data dependences through registers, data flow analysis
is used to determine if they are loop-carried. Consider the
dependence arc n1 → n2. Let r be the register written by
the operation corresponding to n1. If the definition of r by
n1 reaches the loop header, and there is an upwards-exposed
use of r in n2 at the loop header, then the dependence is loop-
carried.

• For control dependences, a simple graph reachability check
is used. If n1 → n2 is a control dependence and all paths
in the control-flow graph from n1 to n2 contain the loop
backedge, then the control dependence is considered loop-
carried.

Irrespective of the above categorization, the dependences be-
tween operations that can be subjected to reduction transformations
and the self-arcs involving induction variables are not considered
to be loop-carried, since suitable transformations can be applied to
enable these operations to be executed in a parallel stage.

3.2 Obtaining the DAGSCC
Once the PDG of the loop is obtained, the strongly connected

components (SCCs) in this dependence graph are then identified [21]
and a directed acyclic graph of them, the DAGSCC , is formed. Each
node of the DAGSCC represents a strongly connected component in
the original PDG. The DAGSCC for the PDG in Figure 1(b) is shown
in Figure 1(c). If there is only one node in the DAGSCC , PS-DSWP
1We use registers to denote virtual registers, which are nothing but
scalar variables whose addresses are never taken.



can not parallelize the loop. If none of the edges in a strongly con-
nected component were labeled as loop-carried dependences, the
corresponding node in the DAGSCC is labeled as doall node. All
other nodes are labeled as sequential nodes. If a node is labeled as
doall, the operations in the SCC corresponding to that node from
two different iterations can be executed concurrently.

3.3 Thread Partitioning
Let D = {d1,d2, . . .dk} be the set of nodes in the DAGSCC . Let

the number of target threads be denoted by n, and the set of threads
be T = {t1, t2, . . .tn}. The thread partitioning algorithm takes D and
T as input and produces the following as output:
• A partition P = {B1,B2 . . .Bl} of the nodes in the DAGSCC .

Each element of P corresponds to one of the l stages of the
pipeline.

• An assignment A = {(B1,T1),(B2,T2) . . .(Bl ,Tl)}, which maps
the blocks2 in the partition P to subsets Ti of T . The Tis in
fact partition the thread set T .

To be valid, an assignment A obtained as above must respect the
following property:

PROPERTY 1 (VALID ASSIGNMENT). The assignment A is va-
lid if it satisfies the following conditions:

1. For i 6= j, if there is some dependence from Bi to B j , then
there are no Bk1 ,Bk2 . . .Bkn , where k1 = j and kn = i, such
that there is some dependence arc from every Bkl to Bkl+1 . In
other words, the dependence arcs between the blocks in the
partition do not form a cycle.

2. For every (Bi,Ti), with |Ti|> 1, the DAGSCC nodes in Bi must
be doall nodes, and none of the dependence arcs among the
nodes in Bi is loop-carried.

The first condition ensures that the blocks Bi can be mapped to
threads that form a pipeline. The second condition ensures that
only doall nodes are present in a parallel stage and that there are no
loop-carried dependences within a parallel stage.

The goal of thread partitioning is to find an assignment that mini-
mizes the execution time. Finding the optimal solution to this prob-
lem is NP-hard, even assuming that the execution times of opera-
tions are known a priori. For this reason, a heuristic solution is used
to solve the partitioning problem in this work. In our current imple-
mentation, we focus our attention only on loops that have a good
amount of iteration-level parallelism. Hence, we simplify the par-
titioning problem by allowing only one of the pipeline stages to be
assigned to more than one thread. In other words, the partitioning
algorithm allows only one (Bi,Ti) with |Ti| > 1 and, for all other
(B j,Tj) pairs, |Tj|= 1.

Algorithm 2 shows the thread partitioning algorithm used in this
work. The algorithm starts by assigning each node in the DAGSCC
to its own partition block. If a node is labeled doall, the corre-
sponding block is also labeled as doall. The partitioning algorithm
then greedily merges doall blocks. Two doall blocks B1 and B2 can
be merged if the following conditions are satisfied:

1. There is no block B3 such that a node in B3 is reachable from
a node in B1 and a node in B2 is reachable from a node in
B3 in the DAGSCC . If such a block B3 exists, then the de-
pendences between the blocks will form a cycle among the
blocks after merging, resulting in a dependence cycle among
the threads.

2An element of a partition is called block. Thus, in this paper, a
block refers to a set of PDG nodes. Block does not refer to a basic
block unless explicitly mentioned as such.

Algorithm 2 Thread Partitioning
Input: DAGSCC,T
Assign each node i to its own block Bi
Initial partition P = {Bi|i ∈ DAGSCC}
Classify each Bi as either doall or sequential
D = merge_doall_blocks(P)
MAXD = max_profile_weight_block(D)
Reassign members of the set D−MAXD as sequential
SEQ = merge_sequential_blocks(P)
d = |T |− |SEQ|
i = 1
A = {}
for n ∈ DAGSCC in topological order do

if block B containing n is sequential then
Add (B,{ti}) to A
i = i+1

else
Add (B,{ti, ti+1, . . .ti+d−1}) to A
i = i+d

end if
end for

(a) Before (b) After

Figure 3: Partitioning before and after merging doall nodes.

2. None of the dependence arcs connecting the PDG nodes in
B1 and B2 is a loop-carried dependence arc. This is necessary
to satisfy condition 2 of Property 1.

This process is continued till no more merging is possible. Fig-
ure 3(a) shows the two doall blocks formed after applying the greedy
algorithm. After merging, only the doall block with the maxi-
mum profile weight is retained as a doall block, while all remain-
ing blocks are re-labeled as sequential. The sequential blocks are
then merged greedily till no more merging is possible without vio-
lating the conditions for obtaining a valid assignment. Each of the
sequential blocks is assigned a single thread. All the remaining
threads are assigned to the sole doall block. Figure 3(b) shows the
final partition for our example loop. PDG nodes E, F, G, H and I
form the doall block with the largest weight. The other doall block,
containing only PDG node B, is reassigned as a sequential node,
and then merged with the other two sequential blocks to form a
single sequential block that contains the PDG nodes A, B, C, D
and J. Thus, for this loop, the PS-DSWP algorithm produces two
stages, where stage 1 is a sequential stage and stage 2 is a parallel
stage.

After partitioning the nodes, the compiler estimates the speedup
for the given partition based on the profile weight of operations in
each block of the partition. The compiler applies the transformation
only if the estimated speedup is above a threshold.



3.4 Code Generation
After the partition and assignment are chosen, multi-threaded

code is generated according to the following steps.

3.4.1 Distributing original loop operations
Let P = {B1,B2 . . .Bl} be the partition obtained by thread parti-

tioning. The instructions in B1 are left in the original loop, while
the instructions in each of the other Bis are moved and encapsu-
lated into their own procedures F2 to Fl . These procedures are
called worker-thread procedures. The creation of these procedures
is described by Ottoni et al. [13]. For parallel stages, we want
all the threads for a stage to execute the same thread procedure
to reduce code bloat, and yet want to perform some thread spe-
cific actions. Hence, the compiler creates another procedure called
Master_T hread per each thread. These Master_T hread proce-
dures are spawned as separate threads at program initialization and
each of them calls a thread procedure Fi at the beginning of each
loop invocation. Fi is passed a parameter that is used to distinguish
among the multiple threads that execute that Fi.

3.4.2 Inserting inter-thread communication
Once the operations are distributed to their respective proce-

dures, dependences are communicated between the procedures. In
the discussion that follows, we assume the use of some kind of
send/receive primitives. Based on the position in the CFG where
the communication operations are inserted, inter-thread communi-
cation can be classified as follows:

Communication inside the loop: Consider two blocks Bi and
Bi+1 produced by the thread partitioning algorithm. Let PBi and
PBi+1 be the PDG nodes contained in the two blocks. Consider
the set of PDG edges E = {(u,v) | u ∈ PBi ,v ∈ PBi+1}. E is the
set of edges whose source node belongs to PBi and the destination
node belongs to PBi+1 . The dependences represented by E need to
be communicated from the thread executing the operations in Bi
to the thread executing the operations in Bi+1. The dependences
communicated include both data and control dependences.

To communicate a data dependence that occurs through a regis-
ter, an explicit send instruction sends the value of the register im-
mediately after the operation corresponding to the source of the
dependence. On the receiving side, this value is received at the cor-
responding program point. If the data dependence occurs via mem-
ory, the send and receive instructions are used only for synchroniza-
tion. The send/receive instructions used for memory synchroniza-
tion also implement release/acquire semantics to ensure sequential
memory consistency.

Control dependences are communicated using a different mecha-
nism. Consider the control dependence n1→ n2. The node n1 must
correspond to a conditional branch instruction. This dependence is
communicated by replicating that branch instruction in the thread
containing n2. The direction of execution of the replicated branch
mirrors that of the original branch. This requires communicating
the branch direction to the other thread, which can be viewed as
a data dependence communication. Since all the operations inside
the loop are transitively control dependent on the loop exit branch,
the loop branch is replicated in all the threads. This recreates the
loop structure in all the threads.

Communication between a parallel stage and a sequential stage
is treated in a slightly different way. Consider a dependence n1→
n2 from a sequential stage S to a parallel stage P. Let p be the
number of threads that execute the parallel stage. The sequential
thread has to communicate the dependence to each of the threads
in a round-robin fashion. In other words, during the ith iteration
of the loop, the dependence is communicated to the (i mod p)th
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Figure 4: Inter-thread communication

thread executing the parallel stage P. Section 4 discusses how our
implementation of send and receive primitives permits this without
requiring the thread procedure that executes P to be replicated.

Figure 4 shows the communication of dependences for the loop
in Figure 1. Thread t1 executes the sequential stage and threads t2
and t3 execute the parallel stage. Both t2 and t3 execute the same
copy of the loop. The communications within the loop occur from
t1 to t2 and t3, alternately. The communications with t2 are shown
in dashed lines, and the communications with t3 are shown in dot-
ted lines. The loop exit branch A is split into two statements A1 and
A2, where A1 computes the branch condition and A2 is the actual
branch. Thread t1 executes A1 and communicates the value to t2
and t3 by means of the send/receive pair (S3, R3). The branch A2
is replicated in the parallel stage as A2’, thereby completing the
communication of the control dependence. This creates the loop
structure in the parallel stage. The branch C is similarly commu-
nicated to t2 and t3. The data dependence from J that defines the
variable p is communicated using the send/receive pair (S2, R2).

Communication of live-ins: If a register defined outside the
loop is used within the loop in the newly created threads, then the
value of this register at loop entry needs to be communicated. Con-
sider a procedure Fi, where i > 1, that uses a value v defined out-
side the loop. If Fi executes a sequential stage, then the value v is
communicated to Fi at the pre-header of the loop. If Fi executes
a parallel stage, then the location of communication depends on
whether the value is loop-invariant or not. If the variable contain-
ing v is loop-invariant, then the value is communicated in the pre-
header. If the variable is redefined inside the loop, communicating
the value in the pre-header will result in incorrect execution. To
see this, consider the variable p in Figure 1, which is defined both
outside and inside the loop. Consider that p is communicated to the



parallel stage outside the loop at the pre-header. Since all threads
executing the parallel stage execute the same thread procedure, all
of them would be initialized with the value of p outside the loop.
But only the first thread executing the parallel stage has to be ini-
tialized with this value, since only that thread will execute the first
iteration of the loop. In the second parallel thread, for instance, the
variable p needs to be initialized with the value of p produced by
the statement J in the first iteration of the loop, and not the value
from outside the loop. Hence, if a variable is defined both inside
and outside the loop, its value must be communicated at the loop
header, instead of the pre-header.

In Figure 4, the communication of the live-in variable p is shown
by the send/receive pair (S2, R2) in basic block 1. Note that p is
also communicated within the loop in basic block 8. In this exam-
ple, the (S2, R2) pair in basic block 8 can be removed since the
R3 in block 1 redefines p . However, since our optimization frame-
work does not yet support multi-threaded redundancy elimination
optimization, this communication is not removed.

Communication of live-outs: All the variables that are defined
inside the sequential stages and live out of the loop are communi-
cated back to the main thread. In the parallel stages, for each regis-
ter that is not control dependent on any branch within the loop, only
the thread that executes the last iteration of the loop sends the value
of the register. If the variable is an accumulator, all the threads
send the value to the main thread. For conditionally defined vari-
ables and min/max reduction variables, all threads executing the
parallel stage send both the variable and also the iteration in which
the variable was last written. The use of this iteration information is
described in Section 3.4.5. The only live-out variable in the exam-
ple loop is the accumulator sum , whose communication is shown
by the two (S5, R5) pairs.

3.4.3 Loop termination
As described above, the loop exit branches are replicated in all

thread procedures to satisfy control dependences. Exit branch repli-
cation enables the threads executing sequential stages to properly
terminate the loop. However, this is not sufficient for parallel stages,
since only one of the threads assigned to a parallel stage executes
the loop each iteration, and thus only that thread will exit the loop
by taking the original loop exit. Two different approaches are used
to terminate the rest of the threads executing the parallel stages,
depending on where a parallel stage is located in the pipeline. If
a parallel stage is the first stage of the pipeline, it implies that the
loop is counted. This follows from the fact that all operations are
control dependent on all loop exit branches, and an exit branch can
be labeled doall only if the loop is counted. In that case, each
thread executing the parallel stage counts the number of iterations
they need to run and exit appropriately. If a parallel stage is not
the first stage, the first (sequential) thread, which is guaranteed to
execute the loop exit branch, explicitly communicates loop termi-
nation information to the threads executing the parallel stage. The
first thread sends a true token at the loop header to the thread
that is going to execute the current iteration. On loop termination,
it sends a false token to all the threads. Since the parallel-stage
thread that has exited the loop by taking the loop exit branch also
receives a false token, it has to consume that token after exiting
the loop. The communication of this exit token is shown by the
(S1, R1) pair in Figure 4. Basic block 10 in t2 and t3 has a branch
that exits based on the value received by R1. This token is sent by
t1 in basic block 1 within the loop, and basic block 9 outside the
loop. Either t2 or t3 exits the loop by executing the original loop
exit branch and consumes this token in basic block 11.

if(cost < mincost){
mincost = cost;
minnode = node;

}

(a) Original code

if(cost < mincost){
ic = curr_iteration;
mincost = cost;
minnode = node;

}

(b) Code in parallel stages

receive(mincost1)
receive(minnode1)
receive(ic1);
receive(mincost2)
receive(minnode2)
receive(ic2);
mincost = mincost1;
minnode = minnode1;
if(mincost2 < mincost){

mincost = mincost2;
minnode = minnode2

}
else if(mincost2 == mincost){

if(ic2 < ic1)
minnode = minnode2;

}

(c) Merging of the results

Figure 5: Example of conditionally defined live-outs

3.4.4 Handling induction variables
Our thread partitioning algorithm could assign a loop induction

variable to a parallel stage. In that case, the compiler needs to
suitably initialize the induction variables at the beginning of each
thread. Consider a basic induction variable of the form i = i+k. Let
i0 be the initial value of i before entering the loop. Let 0,1, . . . , p−1
be the thread identifiers of the threads executing the parallel stage
that increments the induction variable. As described above, this
thread identifier is passed as a parameter (id) to the thread proce-
dure. In the parallel stage, the variable i is initialized to i0 + id× k
at the loop’s pre-header. Thus each thread executing the parallel
stage initializes the variable with a different value. Inside the loop,
instead of incrementing the variable by k, it is incremented by p×k.

3.4.5 Handling loop live-outs
Different types of loop live-outs defined in parallel stages need

to be handled differently. If a live-out is an accumulator, all threads
executing the parallel stage send the values to the main thread at
loop termination, and the main thread sums them up. For other
live-outs that are not conditionally defined, only the thread that exe-
cutes the last iteration of the loop sends the value to the main thread.
Conditionally defined live-outs pose an additional problem. To see
this, consider the code fragment in Figure 5(a). Assuming that the
computation of mincost and minnode is reducible, this code
fragment can be part of a parallel stage. If that parallel stage is ex-
ecuted by two threads, one of them computes the minimum of the



int a[N], b[N], c[N];
A: for(i = 1; i < N; i++){
B: a[i] = a[i]*b[i];
C: c[i] = c[i-1]+a[i];

}

(a) Loop affected by false sharing

cache lines

array elements

(b) Without chunking (c) With chunking

Figure 6: False sharing

cost variable and the associated node in all even iterations, and
the other thread computes them in all odd iterations. To correctly
obtain the value of minnode , we need to keep track of which iter-
ation in each of the two threads finally wrote the mincost values.
Figure 5(b) shows that a variable ic is assigned the current itera-
tion count whenever mincost is assigned. Figure 5(c) shows how
the main thread merges the two values. If mincost produced by
one thread is less than the mincost produced by the other thread,
the lesser value and the associated minnode is chosen. If the val-
ues are equal, then the iteration count is used to determine the cor-
rect value of minnode .

3.5 Parallelism versus False Sharing
The transformation described above causes the iterations of the

parallel stage to be executed in a round-robin fashion among all the
threads assigned to that stage. This could result in the problem of
false sharing, which could negate the benefits of parallelism ob-
tained by the PS-DSWP transformation. False sharing can occur
on multi-processors that implement an invalidation-based cache-
coherence protocol when two or more different processors alter-
nately write to different locations in the same cache line.

Consider the loop in Figure 6(a). PS-DSWP can parallelize this
loop into a first parallel stage containing statements A and B ex-
ecuted by two threads followed by the sequential stage executing
C. The first thread executing the parallel stage writes to array ele-
ments a[1] , a[3] , a[5] and so on, and the second thread writes
to even elements of the array a . This is depicted in Figure 6(b).
Each row in the figure represents a cache line, and each cell repre-
sents an array element. For the sake of this discussion, we assume
that the cache-line size is 4 times the size of an element, and that
the array is aligned to the cache-line boundary. The two different

shades in the cells represent the two different processors that ex-
ecute the parallel stage, and hence write to the cache line. Since
both threads write to the same cache line most of the time, the ex-
clusive ownership of the cache lines ping-pong between the two
processors. This increases the latency of every access to a . If this
increase in latency is huge, it could negate the benefits of executing
the pipeline stage in parallel.

False sharing can be eliminated in certain cases by applying it-
eration chunking. Each of the threads executing the parallel stage
would execute chunks of contiguous iterations, instead of just one
iteration, in a round-robin fashion. For the example in Figure 6(a),
let us assume that the two parallel threads execute chunks of 4 it-
erations each. The writes to array a now exhibit a pattern shown
in Figure 6(c). Each cache line is now written to by only one pro-
cessor, and the two processors write to alternate cache lines. This
eliminates false sharing.

However, chunking could reduce the amount of parallelism. In
the extreme case, the chunk size can equal the total number of iter-
ations of the loop in a given invocation, which is equivalent to treat-
ing that stage as a sequential stage. In our current implementation,
some simple heuristics are employed to determine a chunk size that
would not significantly reduce the parallelism. The compiler first
checks if the parallel stage contains writes to array elements. If
none of these writes are indexed by a basic induction variable, the
compiler does not chunk the iterations since it can not analyze the
resulting access pattern. For each access indexed by a basic induc-
tion variable, the stride of the induction variable (stride) and the
size of each element of the array (size) are computed. Let cls be
the size of the cache line. A chunk size of cls

stride×size would elim-
inate false sharing for this array access. This is computed for all
accesses, and let cs be the largest of the chunk sizes among those
accesses. If cs is chosen as the chunk size, it would eliminate false
sharing. This chunk size is chosen by the compiler only if the aver-
age trip count of the loop per thread executing the parallel stage is
much higher than the chunk size cs.

Chunking requires some additional changes in the transforma-
tion described earlier. In particular, the increment of induction vari-
able by a parallel thread has to be modified. Consider an induction
variable defined by the operation i = i + 1 . In the original se-
quential loop, i takes the values i0, i0 + 1, i0 + 2 . . . i0 + k. If that
operation is part of a parallel stage executed by two threads with-
out chunking, the variable takes the values i0, i0 + 2, i0 + 4 . . . in
the first thread. If chunking with chunk size of 2 is used, i now
takes the values i0, i0 + 1, i0 + 4, i0 + 5, . . . in the first thread. The
other change is in the sequential stages that interact with the chun-
ked parallel stage. These stages now communicate with each thread
for every contiguous cs iterations before moving to the next thread
in a round-robin fashion. To implement this, a new counter, that
increments from 0 to cs− 1 and wraps back to 0, is added to each
stage.

4. ARCHITECTURAL SUPPORT
PS-DSWP does not rely on any hardware support to ensure cor-

rectness of the generated code, which can execute on any commod-
ity multiprocessor system. While the abstract send/receive primi-
tives used in the description of the PS-DSWP transformation can
be implemented in a commodity multiprocessor using the mem-
ory subsystem and mutex primitives, we use a dedicated inter-core
communication hardware for performance reasons. Since the com-
munication between the threads in PS-DSWP is unidirectional in-
side the loop, communication latency does not have a significant
impact on the performance of PS-DSWP. However, the overhead
of executing the communication and synchronization operations



Core Functional Units: 6 issue, 6 ALU, 4 memory, 2 FP, 3 branch
L1I Cache: 1 cycle, 16 KB, 4-way, 64B lines
L1D Cache: 1 cycle, 16 KB, 4-way, 64B lines, write-through
L2 Cache: 5,7,9 cycles, 256KB, 8-way, 128B lines, write-back
Maximum Outstanding Loads: 16

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines, write-back
Main Memory Latency: 141 cycles
Coherence Snoop-based, write-invalidate protocol
L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction

bus with round robin arbitration

Table 1: Machine details.

can have an adverse effect on performance. This is especially true
in loops with a short body, where the overhead of executing a se-
quence of instructions per iteration to lock a shared data structure,
communicate the values, and unlock the data structure may be sig-
nificant.

In this work, we use the synchronization array [16] to reduce the
queue communication and synchronization overheads. The syn-
chronization array provides a low-overhead inter-core communica-
tion and synchronization mechanism, and essentially consists of a
set of hardware-implemented queues between the cores. The inter-
face to the synchronization array proposed by Rangan et al. [16] is
in the form of produce and consume instructions. The produce
instruction takes a register and a queue number as its operands, and
sends the register to the queue specified by the queue number. Sim-
ilarly, the consume instruction takes a register and a queue number
as its operands, and consumes the value from the head of the queue
into the specified register.

In PS-DSWP, multiple threads executing a parallel stage all share
the same code. But each of them has to use a different queue to
communicate with other stages, since a queue is only a point-to-
point communication channel. This requires a mechanism whereby
the queue numbers used in produce and consume instructions
are transparently renamed to different physical queues. To sup-
port this, we add a special queue-base register to each processor
core. The physical queue numbers are obtained by adding the
virtual queue numbers in the produce /consume instructions to
the value in the queue-base register. A new instruction, called
queue.set , is added to set the value of the queue-base regis-
ter. The round-robin communication between the sequential and
the parallel threads is achieved by suitably changing the queue-base
register in each of the cores.

5. EXPERIMENTAL EVALUATION
This section describes our experimental evaluation of PS-DSWP.

The base model used is a 6-core Itanium 2 CMP developed using
the Liberty Simulation Environment (LSE). The cores are validated
(IPC and constituent error components accurate to within 6% of
real hardware for benchmarks measured [15]), and the details of
each core in the model are given in Table 1. To this base model, a
synchronization array with 512 queues, each with 32 entries, was
added. The produce , consume and queue.set instructions
are also modeled in the pipeline of the Itanium 2 cores.

We have implemented PS-DSWP in the VELOCITY research
compiler [22]. The applications are first compiled into a low-level
intermediate representation, and then transformed by a round of
classical optimizations. PS-DSWP was then automatically applied
to the selected loops. Translation to Itanium 2 instructions is fol-
lowed by another round of classical optimizations, scheduling, reg-
ister allocation, and a final scheduling phase. The results reported
are in terms of loop speedup over single-threaded binary, which is
obtained by the same sequence of optimizations except PS-DSWP.

Except for the loop being optimized, the rest of the application re-
mains unchanged. Consequently, detailed performance simulation
is done only for the loops being optimized. The caches and branch
predictors are kept warm while the rest of the application is exe-
cuted on a fast-forward mode.

To evaluate PS-DSWP, the compiler identified a set of loops that
can not be parallelized by DOALL and contributes to at least 15%
of the application’s execution time. The compiler first estimated
the potential speedup based on the profile weights of the operations
in the partition and the communication operations. If the estimated
speedup is less than 50% with 6 threads, the compiler does not
transform the loop. This is used as a heuristic to avoid slowdown
of the parallel code compared to the single threaded code. The
details of the selected loops are presented in Table 2. The loop in
300.twolf had to be manually annotated to indicate the absence
of a memory dependence, since the pointer analysis used in our
compiler is not powerful enough to conclude that. The nature of
the pipeline stages obtained as a result of applying the PS-DSWP
transformation is also given in the final column of Table 2. In this
column, an s indicates a sequential stage and a p indicates a parallel
stage. Thus, for instance, otter is parallelized into three pipeline
stages, with a parallel stage sandwiched between two sequential
stages.

Figures 7(a)-(e) show the performance of the five selected loops
after applying PS-DSWP. For each loop, the graphs compare the
speedups obtained by DSWP and PS-DSWP for the same num-
ber of threads. PS-DSWP shows a speedup of up to 155% in
458.sjeng , and a geometric-mean speedup of 114% among
these 5 loops, using up to 6 threads. In comparison, the geometric-
mean speedup of DSWP in these loops is 36%, also using up to
6 threads. In all the benchmarks except 300.twolf , PS-DSWP
outperforms DSWP for any given number of threads. The body
of the loop in 300.twolf is large with many SCCs allowing
DSWP to obtain a good balanced partition. However, the loop in
300.twolf executes for only between 3 to 4 iterations on aver-
age. Hence executing the parallel stage in more than 3 threads re-
sults in diminishing returns. The loop in 456.hmmer also shows
poor scalability, even though the loop iterates for 300 times per in-
vocation. In 456.hmmer , the sequential stage takes a significant
amount of time to execute and starts to become the bottleneck after
a replication factor of 3 for the parallel stage. In the other three
loops, PS-DSWP shows scalability up to 6 threads, while DSWP
plateaus immediately. The poor scalability in these benchmarks
can be overcome by a better thread partitioning algorithm that tries
to do load balancing between the stages.

Figure 7(f) shows the importance of applying iteration chunk-
ing to the loop in 456.hmmer with 4 threads. The bar on the
left shows the speedup obtained when iteration chunking was not
applied. The second bar shows the speedup for the same code
when all data accesses were assumed to always hit in the L1 cache.
This speedup number is relative to a single-threaded baseline which
was also simulated with a perfect cache. The difference in these
speedups indicates that cache effects significantly influence the
speedup of the multi-threaded code in this loop. The third bar
shows that most of this difference goes away on our original cache
model shown in Table 1 when the compiler uses a chunk size of
32. This suggests that chunking can be effective in mitigating the
effects of false sharing. The final bar shows the speedup of the
chunked code with a perfect data cache. This speedup is less than
what can be obtained by using a perfect cache when chunking is
not applied, indicating that iteration chunking results in a loss of
parallelism.



Benchmark Description Loop Hotness Pipeline stages
ks Kernighan-Lin graph partitioning FindMaxGpAndSwap (outer) 98% s→ p
otter theorem prover for first-order logic find_lightest_geo_child 15% s→ p→ s
300.twolf placement and routing new_dbox_a (outer) 30% s→ p
456.hmmer hidden markov model P7_Viterbi (inner) 85% p→ s
458.sjeng chess program std_eval 26% s→ p

Table 2: Benchmark Details
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Figure 7: Speedups Over Single-threaded Execution

6. RELATED WORK
Several automatic techniques have been proposed to extract

thread-level parallelism. The techniques closest to PS-DSWP are
DSWP [13, 16] and loop distribution [11]. As discussed earlier,
PS-DSWP is an extension of DSWP to also exploit iteration-level
parallelism. PS-DSWP is similar to loop distribution in the sense
that both techniques isolate the parts of loop with loop-carried de-
pendences from the parts without these dependences. The main
difference between PS-DSWP and loop distribution combined with
DOALL is that PS-DSWP allows the execution of the sequential
part of the loop to overlap with the DOALL part, using pipeline
parallelism. Moreover, loop distribution, as proposed in literature,
does not permit arbitrary control flow within the region. Finally,
the use of synchronization array in PS-DSWP allows it to operate
on uncounted loops.

DOPIPE [7, 14] is another technique that exploits pipeline paral-
lelism. Unlike DSWP, DOPIPE does not handle loops with control
flow inside. Davies [7] also proposes executing multiple copies
of a DOPIPE stage if that stage contains an inner DOALL loop.
The PS-DSWP technique is more general because it can create par-
allel stages without requiring the operations to be inside an inner

DOALL loop.
DOACROSS [5] is another non-speculative technique that can

be used to extract iteration-level parallelism on loops with loop-
carried dependences. DOACROSS does not permit control flow
within the loop. Moreover, DOACROSS does not result in a pipeline
of stages. The inter-thread dependences in DOACROSS form a cy-
cle and would be the bottleneck as the latency of inter-core com-
munication increases. Similar to DSWP, inter-core communication
latency has negligible impact on the performance of PS-DSWP.

While PS-DSWP is a non-speculative technique, several specu-
lative techniques have been proposed to extract iteration-level par-
allelism. Thread-level speculation (TLS) [10, 12, 19, 20] tech-
niques speculatively execute consecutive iterations of a loop con-
currently, assuming that the dependences between those iterations
are infrequent. Inter-iteration dependences that manifest frequently
are synchronized. Other speculative parallelization techniques such
as LRPD test [17], R-LRPD test [6] and master/slave speculative
parallelization [24] have also been proposed to speculatively ex-
tract iteration-level parallelism.

Speculative DSWP [23] adds speculation support to DSWP. The
addition of speculation can increase the number of pipeline stages



in a loop since speculating dependences might breakup some of the
SCCs. Bridges et al. [2, 3] have shown that DSWP in combination
with speculation and parallel stages has the potential to unlock par-
allelism among all the programs in the SPEC2000 integer bench-
mark suite.

7. CONCLUSION
This paper presented a new non-speculative compiler transfor-

mation called Parallel-Stage Decoupled Software Pipelining (PS-
DSWP). PS-DSWP combines the pipeline parallelism of DSWP [13,
16] with iteration-level parallelism of DOALL [1] in a single trans-
formation. This paper described in detail the algorithms and the
compiler implementation required to automatically apply the PS-
DSWP transformation. We evaluated PS-DSWP on a set of com-
plex loops from general-purpose applications. PS-DSWP showed
up to 155% (114% on average) speedup with up to 6 threads on this
set of loops, and showed better scalability than DSWP.
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