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Abstract

Pointer analysis is traditionally performed once, early
in the compilation process, upon an intermediate repre-
sentation (IR) with source-code semantics. However, per-
forming pointer analysis only once at this level imposes a
phase-ordering constraint, causing alias information to be-
come stale after subsequent code transformations. More-
over, high-level pointer analysis cannot be used at link time
or run time, where the source code is unavailable.

This paper advocates performing pointer analysis on a
low-level intermediate representation. We present the first
context-sensitive and partially flow-sensitive points-to anal-
ysis designed to operate at the assembly level. As we will
demonstrate, low-level pointer analysis can be as accurate
as high-level analysis. Additionally, our low-level pointer
analysis also enables a quantitative comparison of prop-
agating high-level pointer analysis results through subse-
quent code transformations, versus recomputing them at the
low level. We show that, for C programs, the former prac-
tice is considerably less accurate than the latter.

1 Introduction

Pointer analysis is an important tool for modern op-
timizing compilers. The aliasing information obtained
from pointer analysis enables aggressive code optimiza-
tions, such as redundant store elimination and load/store re-
ordering. Traditionally, pointer analysis is performed very
early in the compilation process, on a high-level interme-
diate representation (IR) containing source-level semantic
information. The result of the analysis, often in the form of
dependence edges, is annotated on the IR and must be con-
servatively maintained by subsequent code transformations.

Unfortunately, performing pointer analysis only once on
a high-level IR imposes a phase-ordering constraint upon
the compilation process, as illustrated in Figure 1. The fact
that pointer analysis takes high-level IR as input requires
that it be performed before the code lowering phase of the
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Figure 1. Traditional compiler organization

char A[10],B[10],C[10];
foo() {
  int i;
  char *p;

  for (i=0;i<10;i++) {
    if (...)
1:    p = A;
    else
2:    p = B;
3:  C[i] = p[i];
4:  A[i] = ...;
  }
}

1:  p = A

3:  C[i] = p[i]
4:  A[i] = ...

2:  p = B

. . . . . .

3:  C[i] = p[i]
4:  A[i] = ...

2:  p = B
3’:  C[i] = p[i]
4’:  A[i] = ...

1:  p = A

(c) Transformed code CFG(a) Source code (b) Source code CFG

Figure 2. Conservative propagation of depen-
dence information

compiler. Subsequent code transformations must conser-
vatively propagate the analysis results, potentially diluting
their precision. Ultimately, less precise alias information
will limit the effectiveness of memory optimizations and
other optimizations such as scheduling. For example, con-
sider the C code shown in Figure 2(a) and the control-flow
graph corresponding to its loop body in Figure 2(b). Be-
causep at instruction 3 may point to either arrayA or array
B, the high-level analysis correctly determines that instruc-
tions 3 and 4 may access the same memory location. This
memory dependence is illustrated by the arc between in-
structions 3 and 4 in Figure 2(b). After superblock forma-
tion [1] is performed on this code, the control-flow graph
illustrated in Figure 2(c) is obtained. Instructions 2, 3 and
4 are grouped into a superblock. Two new instructions (3’
and 4’) are created through tail duplication. Clearly, there
is no longer any memory dependence between instructions
3 and 4 in Figure 2(c). However, the superblock formation
algorithm, without additional knowledge of how to perform
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memory disambiguation, conservatively propagates the de-
pendence relation to the transformed code, illustrated by the
dashed arc in Figure 2(c). This conservative, unnecessary
dependence prevents the scheduler from moving instruction
4 before 3, for example. Conceivably, code transformations
such as superblock formation can be augmented to incre-
mentally update pointer analysis results in a fully precise
way. However, this would mean that each code transforma-
tion would have to incorporate a pointer analysis component
comparable in both implementation difficulty and computa-
tional complexity to the original pointer analysis algorithm.

Additionally, high-level pointer analysis is only applica-
ble when the source code is available. Therefore, tasks such
as binary re-optimization, link-time optimization, and run-
time optimization cannot benefit from it.

To overcome these limitations, this paper argues for per-
forming pointer analysis on a low-level IR. Not only can this
eliminate the conservative dependence propagation prob-
lem, but it is also an important step toward fully source-
language independent memory disambiguation for binaries.
In this paper, we present the first context-sensitive and par-
tially flow-sensitive points-to analysis that operates at the
assembly level, which we call the VELOCITY Low-Level
Pointer Analysis (VLLPA). We compare the accuracy of
VLLPA to that of a state-of-the-art high-level pointer anal-
ysis and find that our analysis matches the high-level analy-
sis closely. Additionally, for the C programming language,
we identify possible accuracy loss that comes with the loss
of source language information. Finally, we quantitatively
characterize the impact of conservatively propagating mem-
ory dependences through optimizations by comparing the
stale dependence information originating from the IMPACT
compiler’s [2] high-level analysis against that computed by
our low-level analysis after code transformations.

In summary, the contributions of this work are:

• The first context-sensitive and partially flow-sensitive
low-level points-to analysis algorithm.

• A characterization of the precision loss of the points-to
algorithm due to translation from a high-level IR to a
low-level IR for the C programming language.

• A quantitative analysis of the conservative memory de-
pendence propagation problem.

We discuss related work in Section 2. Section 3 presents
the VLLPA algorithm. Section 4 explores the information
lost in the IR lowering process. Section 5 compares the ac-
curacy of our analysis to that of the IMPACT compiler’s
high-level pointer analysis. Section 6 dissects the conser-
vative dependence propagation problem in detail. Section 7
describes the impact of different pointer analyses on opti-
mization effectiveness. Finally, we conclude in Section 8.

2 Related Work

There is a wealth of literature on pointer analysis [3],
though very few papers focus on low-level program repre-
sentations. Below, we discuss the most salient aspects of
memory analysis algorithms and explain the approach taken
in this paper. Table 1 summarizes several related algorithms
with respect to these aspects.

Input Type Most pointer analysis algorithms operate on
high-level IRs that preserve information from the
source code [2, 4, 5, 6]. As explained in Section 1, per-
forming pointer analysis at the high level leads to con-
servative dependence propagation. Low-level pointer
analysis has been performed before [7, 8] and requires
different assumptions.

Language FeaturesPointer analysis algorithms often sup-
port only a subset of the source language’s features [6,
9, 10]. The language features supported can dramati-
cally affect the algorithm’s complexity. For example,
Steensgaard’s algorithm is almost linear when applied
to a simple language [9], but becomes exponential
when aggregate fields are added to the language [5].
The IMPACT compiler’s pointer analysis algorithm [2]
can handle all features of C, including function point-
ers and pointer arithmetic. VLLPA handles all assem-
bly language features, thus all features of any higher
level language.

Context Sensitivity Context-insensitive algorithms treat
the whole program as a single interprocedural con-
trol flow graph and suffer from the problem ofunre-
alizable pathswhere values from one call site can be
propagated via the callee to another call site [11, 9,
8]. Conversely, context-sensitive algorithms consider
only paths along which calls and returns are properly
matched [2, 7, 4, 6]. This can be achieved by com-
puting atransfer functionthat summarizes the effects
of each procedure and applying it wherever the pro-
cedure is called [6]. Context-sensitive algorithms are
more precise, but are usually slower and much more
complicated to implement. The algorithm presented in
this paper not only uses transfer functions to separate
the effects of a called procedure at different call sites, it
also ensures that the concrete values propagated from
different call sites to the callee can be considered inde-
pendently when computing aliases within the callee.

Flow Sensitivity Flow-insensitive algorithms ignore the
order of statements and need only maintain a single
points-to relation for the whole procedure [2, 9, 11].
On the other hand, flow-sensitive algorithms follow
the program control flow, maintaining different analy-
sis solutions at different program points [6]. Naturally,
flow-sensitive algorithms are more precise, but also



more time- and memory-intensive. VLLPA is partially
flow-sensitive; it tracks the values of registers accord-
ing to their position in the flow graph, but maintains
only a single points-to set for each memory location.

Modularity Some pointer analysis algorithms, especially
context-sensitive ones such as [4, 10], require the
whole program to be memory-resident during analysis.
Other algorithms are modular, in the sense that only
part of the program and/or the analysis information
needs to be present in memory at each point [2, 6, 12].
The algorithm presented in this paper is modular.

Store Abstraction The runtime store can be abstracted
using astore-basedor a path-based(storeless) ap-
proach. The store-based approach uses a finite num-
ber of nodes in an abstract store graph to represent
a potentially infinite number of runtime locations [6].
The path-based approach names runtime locations by
how they are accessed from program variables [13],
described using an abstraction calledaccess path. As a
single memory location may be reachable via multiple
access paths, it may have multiple names. Path-based
approaches are less appropriate for low-level analyses
because program variables are not readily distinguish-
able at the low level. Hence VLLPA is store-based.

Heap Modeling Heap-allocated objects can either be
named according to their allocations sites or modeled
in greater detail by shape analysis [14], which is gen-
erally more expensive to compute. There is a spec-
trum of granularity at which heap objects can be dis-
tinguished based on their allocation sites. Certain algo-
rithms [12] merge all heap allocation sites together, not
distinguishing between heap objects at all, while other
algorithms [4] differentiate heap blocks allocated at the
same allocation site based on the different call chains
reaching that site. There is an obvious trade-off be-
tween analysis time/memory consumption and preci-
sion. VLLPA limits the allocation context information
to at most two consecutive call edges. This is suffi-
cient to provide good precision while preventing too
many abstract heap blocks from being produced.

Few techniques for low-level pointer analysis have been
developed. Most commercial compilers, such as GCC, only
apply a simplistic intraprocedural memory disambiguation
technique calledinstruction inspection, which considers
two memory references to be non-conflicting based on ad-
hoc rules such as “same base register with no intervening
redefinitions and different offsets”.

Two dataflow-based interprocedural low-level pointer
analyses have been proposed. Debray et al. [7] propose
a flow-sensitive, context-insensitive alias analysis of exe-
cutable code that suffers from three major sources of impre-
cision. First, it does not keep track of any memory content.

Second, if two different definitions of a register reach the
same join point, then it will widen the value of that register
to ANY, which denotes all possible addresses. Third, mem-
ory addresses are distinguished only by their lower-order
bits. As a result, this algorithm can only provide informa-
tion for 35%-60% of all memory operations.

Balakrishnan et al. [8] propose a flow-sensitive algorithm
for analyzing memory accesses in x86 executables. Their
analysis computes an over-approximation of values stored
in memory locations in addition to registers, but it, like
the Debray’s algorithm, has the drawback of being context-
insensitive. Empirical studies show that flow sensitivity, in
the absence of context sensitivity, does not significantly im-
prove precision [15]. Neither of these two works attempts
to match the accuracy of their analyses against that of high-
level analysis.

In this paper, we will compare our low-level analysis
to the IMPACT compiler’s high-level pointer analysis [2].
IMPACT’s powerful algorithm is one of the few context-
sensitive algorithms that can handle large programs from
the SPEC benchmark suites and that deal with all features
of C. The algorithm uses a path-based memory model and
is context-sensitive but flow-insensitive.

3 Low-level Points-to Analysis

Broadly, our proposed algorithm is an iterative context-
sensitive and partially flow-sensitive algorithm for low-level
code. It combines elements from the Relevant Context In-
ference (RCI) algorithm [6] and the IMPACT compiler’s
Modular Interprocedural Pointer Analysis algorithm [2],
appropriately modified to work on low-level code.

To achieve context sensitivity, the algorithm computes
a transfer functionfor each procedure, which summarizes
the effects of a call to that procedure on memory. Obvi-
ously, a procedure’s transfer function will need to incor-
porate the transfer functions of its callees. This is done
through bottom-up propagation of transfer functions from
callees to callers. To handle calls through function point-
ers, we adopt the technique proposed in [12]: the algo-
rithm starts with an underestimated call graph, which is aug-
mented during the course of the analysis, as possible targets
for indirect procedure calls are discovered. The rest of this
section presents a detailed description of the algorithm.

3.1 Algorithm Outline

The algorithm consists of four major phases, as shown in
Figure 3. Phases 0 to 2 are applied iteratively until a fixed
point is reached, then Phase 3 is applied.

Phase 0: A call graph is constructed. If indirect calls are
present, only targets that have already been identified



Technique IR Feature Context Flow Time Modular Store
Level Coverage Sensitive Sensitivity Complexity Abstraction

Debray et al. [7] Assembly Complete No Reg Exp Yes Store-based
Balakrishnan et al. [8] Assembly Complete No Reg/Mem Exp Yes Store-based

VLLPA Assembly Complete Yes Reg Exp Yes Store-based
IMPACT [2] Source Complete Yes No Exp Yes Storeless

RCI [6] Source Partial Yes Reg/Mem Exp Yes Store-based
Landi & Ryder [10] Source Partial No Reg/Mem Exp No Equivalence
Emami et al. [12] Source Complete Yes Reg/Mem Exp No Store-based
Wilson & Lam [4] Source Complete Yes Reg/Mem Exp No Storeless

Steensgaard [9] Source Partial No No Linear Yes Storeless
Steensgaard [5] Source Complete No No Exp Yes Storeless

Table 1. Summary of some Pointer Analysis Algorithms

Phase 0

Build Call Graph

Phase 3

Compute AliasesIntraprocedural &
Interprocedural

Analyses

Phase 2

Propagate Concrete
Function Names

Phase 1LL code

Resolve Function Pointers

Figure 3. Algorithm Phases

will be taken into account. In the first iteration, all in-
direct calls are presumed to have no targets. The con-
structed call graph is divided into strongly connected
components (SCCs). The SCCs form a directed acyclic
graph, referred to as theSCC-DAGfrom here on.

Phase 1: The SCC-DAG is traversed in reverse topological
order. Analysis is performed on each procedure as-
suming unknown initial values for parameters, global
variables, and all memory locations reachable from
them. This produces atransfer functionthat summa-
rizes the points-to relationships observable by callers
of that procedure. By traversing the SCC-DAG in re-
verse topological order, it is guaranteed that the trans-
fer functions of a procedure’s non-recursive callees
(not in the same SCC with the caller) are available
when the procedure is analyzed. The transfer func-
tions of procedures belonging to the same SCC depend
cyclically on each other, and are therefore computed
simultaneously using fixed-point iteration.

Phase 2: The SCC-DAG is then traversed in topological
order to propagate concrete values of function point-
ers. This makes the partially resolved call graph more
accurate for the next iteration. If any function pointer
targets are changed, the algorithm starts over at phase
0, otherwise the algorithm terminates with phase 3.

Phase 3: After the iteration terminates, the SCC-DAG of
the complete call graph is traversed once more, in topo-
logical order, to propagate all concrete pointer values.

This algorithm differs from both the RCI algorithm [6]
and IMPACT’s algorithm [2]. A major difference from RCI
is that RCI resolves virtual method calls at the beginning
of its algorithm through hierarchy analysis. This allows it
to avoid the iterative loop over phases 0 to 2, but can lead
severe inaccuracies. The two algorithms also handle aliases
between a procedure’s unknown initial values in very differ-
ent ways (see Section 3.5). The differences from [2] arise
from flow sensitivity. By being flow-insensitive, IMPACT’s
algorithm can compute the transfer function of a procedure
independent of the transfer functions of its callees. As a
result, the transfer functions can be produced in an initial
prepass phase, and need not be computed iteratively. This
is not possible for a flow-sensitive algorithm.

Like the other two analyses, our algorithm is modular,
in the sense that during any phase the whole program body
need not be memory resident. Only the procedures belong-
ing to the same SCC and the transfer functions need to be
in memory simultaneously.

3.2 Store Abstraction

Any static memory analysis algorithm has to represent an
unbounded set of runtime memory addresses using a finite
set of abstract names. For this purpose our algorithm uses
a store-based memory model. According to this model, a
program’s memory is divided into a set ofabstract struc-
tures, each with a unique name. Each structure can cor-
respond to multiple memory blocks at runtime. An abstract
structure is created for each global variable in the program’s
data segment. The activation frame of a procedure can be
represented by one or more abstract structures, according
to the calling convention. In our experimental framework
there are three such structures for each procedure: incom-
ing parameter space (IP), outgoing parameter space (OP),
and local variable space (LV). Finally, heap objects allo-
cated locally within a procedure or any of its descendants in



the call graph are named according to the contexts in which
they are allocated. We use the first two call edges at the
top of a call chain reaching a static allocation site as the
context information. A unique abstract structure is created
to represented all heap blocks allocated through call chains
reaching a static allocation site that share the common two
starting call edges.

Unknown initial values(UIVs) are needed to represent
memory blocks accessible by a procedure, but not created
by either the procedure or its callees. UIVs will be cre-
ated for the memory blocks reachable, either directly or in-
directly, through parameters or global variables. For a pro-
cedure parameter or global variableA, we will use the UIV
[A] to represent the memory block pointed to byA. If the
field at offseto of a UIV U is a pointer, then a new UIV,
namedU@o, will be needed to represent the possible value
of that field. The parameter or global variable from which a
UIV is reachable will be referred to as thebaseof the UIV.
For example,A is the base of UIVs[A], [A]@4, [A]@8@16
etc. UIVs are created lazily, whenever they are needed.

Much like C structures, abstract structures havefields,
distinguished by their offsets from the start of the structure.
Therefore anabstract addresshas the form〈S, o〉, whereS
is a structure name ando is an offset. Our algorithm does
not differentiate between different array elements. Instead,
the offset of the first array element is used as a representa-
tive of all elements in the array. If the analysis detects that
the field starting at offseto of a structureS is being accessed
as an array with element sizel, then the element〈S, o〉 will
be used to represent all elements of the form〈S, o + l × i〉.
This will be presented in more detail in Section 3.4.

3.3 Algorithm Highlights

This section describes aspects of VLLPA that distinguish
it from existing high-level pointer analysis algorithms.

• One particular difficulty with analysis at the low level
arises from the fact that common memory operations,
such as array and field accesses, do not appear ex-
plicitly in the code. Rather, the analysis has to infer
whether a memory operation “looks like” a field and/or
array access by examining pointer arithmetic and off-
set calculations, which can often span several instruc-
tions. How VLLPA does this by back tracing and pat-
tern matching is described in Section 3.4.1.

• The number of UIVs in a procedure can be infinite in
the presence of recursive data types. To represent them
in a finite manner, high-level analysis algorithms such
as [6] and [2] generally collapse UIVs with the same
data type. Not only is type information not present in
the low-level, it is also not trustworthy for the C pro-
gramming language anyway. VLLPA limits the num-

ber of UIVs by observing the points-to sets they belong
to. Details are given in Section 3.4.2.

• Since UIVs are essentially access paths, it is possible
for two UIVs to refer to the same runtime location.
To handle aliases between UIVs context-sensitively,
previous store-based analyses either generate different
transfer functions for different alias contexts [4] or tag
points-to pairs with the alias contexts in which they
hold [6]. VLLPA can summarize a procedure assum-
ing no aliases between its UIVs and apply the transfer
function properly to account for such aliases should
they exist at a call site. Such aliases are rare in prac-
tice, hence the overhead is small. This is explained in
Section 3.5.

3.4 Intraprocedural Analysis

This section explains in greater detail the intraprocedural
aspect of Phase 1. The goal of the intraprocedural analy-
sis stage is to summarize a procedure’s effects on memory
through atransfer function. This analysis calculates points-
to sets for registers and memory locations by iterating over
the procedure’s flow graph until a fixed point is reached.
The analysis first transforms the procedure’s low-level rep-
resentation to Static Single Assignment (SSA) form. Since
in this form every register is assigned exactly once, we need
only maintain a single points-to set for each register, instead
of a separate set per register for each program point. This
flow sensitivity with respect to registers allowed by SSA
does not, however, come with excessive growth of the num-
ber of registers, because code growth from SSA is linear in
practice, implying a linear growth of registers. Moreover,
SSA is done only for pointer analysis; the original code is
not modified. Our algorithm isnot flow-sensitive with re-
spect to pointers in memory, hence we use a single points-to
set for each abstract memory location as well.

More formally, the solution to the intraprocedural analy-
sis problem consists of the following three elements.

1. R – A mapping from registers to sets of abstract ad-
dresses, which records the memory locations each reg-
ister may point to.

2. M – A mapping from abstract addresses to sets of
abstract addresses, which records points-to sets for
pointer fields stored in memory.

3. I – A set of unknown initial values (UIVs) used by the
procedure.

Together,M andI form the procedure’s transfer func-
tion.



3.4.1 Analyzing Individual Instructions

In the absence of type declarations, it is not clear which
values, either in registers or in memory, represent pointers.
Values resulting from arithmetic operations other than addi-
tion and subtraction and those residing in floating-point reg-
isters are initially assumed to be non-pointers. In all other
cases the analysis has to assume that a register or a memory
field may be a pointer until it is proven to be a non-pointer,
for example, by the fact that it is involved in arithmetic op-
erations with another non-pointer.

In general, the analysis directly modifiesR, M, and/or
I only when it encounters instructions that may create or
modify pointer values. Such instructions include loads,
stores, additions, subtractions, andφ-functions created by
SSA. Pseudo-code for the actions taken at these instructions
is provided in Figure 4. Below we discuss some of the above
instruction types in more detail.

Load: r1 = mem[r2] A load is handled in a straightfor-
ward way. The only complication arises ifr2 points to a
UIV’s field 〈U, o〉. In general, memory reachable through
a UIV’s field should also be represented by a UIV. Since
UIVs are lazily created, that second UIV may not exist yet.
In this case a fresh UIV namedU@o is created.

Store: mem[r1] = r2 Note that, for an abstract address
〈S, o〉 ∈ R(r1), the values inR(r2) will be addedto the
points-to setM(〈S, o〉). In the related work this is usually
referred to as aweak update. A strong update, on the other
hand, would involve replacing the contents ofM(〈S, o〉)
with those ofR(r2). Strong updates are possible only un-
der certain conditions, which require a quite complicated
mechanism to keep track of (see, for example, the mecha-
nism employed in [6]). Our algorithm eschews strong up-
dates completely for the sake of simplicity and efficiency.

Add: r1 = r2 + r3 When translated to low-level code,
non-trivial memory operations, such as array accesses or
accesses of fields within arrays of structures, will be trans-
lated to a series of register-to-register adds. Therefore it is
especially important that a low-level memory analysis al-
gorithm handle this type of instruction correctly. Typically,
one of the registersr2 or r3 will represent a pointer value,
serving as the base, whereas the other register will represent
an offset. Since we cannot know in advance which register
is the pointer, we have to treat the two operands symmet-
rically, by first assuming thatr2 is the address base, then
making the same assumption forr3, and finally taking the
union of the results. The pseudo-code of Figure 4 deals only
with the first case; the second case is symmetric to it.

If r2 indeed carries a pointer value, its points-to set can
be retrieved fromR. The only problem left is to trace the

integer value held inr3, which is assumed to have the form
i × l + c, wherei is a non-constant value,l is the (con-
stant) size of array elements, andc is a constant displace-
ment. The displacementc will be non-zero if the array is a
structure field, and/or the elements of the array have them-
selves fields. The analysis examines the single definition of
r3 and attempts to pattern-match it to the formi × l + c.
This pattern matching is performed by the functionsin-
fer offset andinfer stride, whose pseudo-code is given in
Figure 5. If the pattern matching fails, then we conserva-
tively setl = 1 andc = 0, essentially meaning thatr3 can
contain all possible offsets. In either case, for every abstract
address〈S, o〉 ∈ R(r2), the element〈S, o+c〉will be added
toR(r1), and the stridel will be recorded appropriately by
callingset stride.

3.4.2 Ensuring Termination

Each analysis action described in the previous section can
only add new arcs inR andM and new elements toI.
Therefore these three elements increase monotonically in
each iteration. To prove that the analysis terminates, it is
sufficient to make sure that there is an upper bound to the
solution. This can be done by ensuring that only a finite
number of abstract addresses is created.

The number of abstract structures in the global data seg-
ment, the activation frame, and those dynamically created
are obviously finite. However, as presented up to now, our
algorithm could potentially create an unbounded number of
UIVs. For example, consider the proceduref shown in Fig-
ure 6(a). This procedure traverses a linked list whose head
is represented by the UIV[P0]. It is easy to see that succes-
sive iterations will add the values〈[P0], 0〉, 〈[P0]@4, 0〉,
〈P0@4@4, 0〉, . . . to R(r1). This problem is solved in
high-level pointer analyses by variations of the algorithm
proposed in [16], which collapses sequences of field ac-
cesses beginning and ending with the same type when a
new UIV needs to be created. In our example, the access
pathsl->next , l->next->next , etc. will be assigned
the same UIV asl , since all of them are of typeT* .

VLLPA does not make any use of type information.
However, it is possible to combine UIVsafter they are cre-
ated by observing the points-to sets they belong to. In the
previous example, once it is observed that the registerr1
can point to either[P0] or [P0]@4, it is reasonable to as-
sume that these two structures are used interchangeably.
Therefore, it is likely that little information will be lost if
[P0]@4 is merged with[P0]. As a result of the merge,
〈[P0], 4〉 will now point back to[P0]. The next iteration
of the analysis will not produce any new UIVs, since the
only field that is loaded is already pointing to a UIV.

As a general rule, whenever the points-to set of a reg-
isterr contains the abstract addresses〈U1, 0〉, 〈U2, 0〉, . . . ,



r1 = mem[r2] mem[r2] = r1 r1 = r2+c r1 = r2+r3 r = φ(r1 ...rn )
s2 :=R(r2)
s1 := ∅
for 〈S, o〉 ∈ s2 do

if S ∈ I and
M(〈S, o〉) ∩ I = ∅ then
I ∪= S@o
M(〈S, o〉) ∪= 〈S@o, 0〉

s1 ∪=M(〈S, o〉)
R(r1) := s1

s1 :=R(r1)
s2 :=R(r2)
for 〈S, o〉 ∈ s2 do
M(〈S, o〉) ∪= s1

s2 :=R(r2)
s1 := ∅
for 〈S, o〉 ∈ s2 do

s1 ∪= 〈S, o+c〉
R(r1) := s1

s1 := ∅
s2 :=R(r2)
if s2 6= ∅ then

c := infer offset(r3)
l := infer stride(r3)
for 〈S, o〉 ∈ s2 do

s1 ∪= 〈S, o+c〉
set stride(S, o, l)

· · ·
R(r1) := s1

s1 :=R(r1)
· · ·
sn :=R(rn)
R(r) :=

⋃n
i=1 si

Figure 4. Transfer functions of individual instructions

infer offset(r ):

if r = r’ + c then
return c

return 0

(a) infer offset

infer stride(r ):

if r = r’ + c then
return infer stride(r’)

if r = r’ * c then
return c

if r = r’ << c then
return 2c

return 1

(b) infer stride

set stride(S, o, l):
for 〈S, o′〉 ∈ domain(M) do

if o′ > o then
M(〈S, o + (o′ − o)%l〉) ∪=M(〈S, o′〉)

(c) setstride

Figure 5. Pseudo-code of intraprocedural analysis subroutines

〈Un, 0〉, whereU1, U2, . . . , Un are all UIVs with the same
base, we mergeU2, . . . , Un with U1. To see why this rule
results in a finite number of UIVs, consider that UIVs are
createdonly at load instructions, as seen in Section 3.4.1.
As soon as a UIVU is created by a loadr1 = mem[r2],
the abstract address〈U, 0〉 will be added toR(r1). There-
fore, for every UIVU there must exist a registerr, such that
〈U, 0〉 ∈ R(r). After applying the above rule, each register
points-to set will contain at most one UIV from each base
(since multiple UIVs with the same base would have been
combined by the above rule). Therefore there are at most
M ×N UIVs, whereM is the number of base UIVs andN
is the number of registers.

Now that the number of abstract structures has been
bounded, we must still make sure that the number of offsets
used for each abstract structure is also bounded. To see why
this is a problem, consider the functiong in Figure 6(c).
This function traverses an array residing in structure[P0]. It
is easy to see that the abstract addresses〈[P0], 0〉, 〈[P0], 4〉,
〈[P0], 8〉, . . . will be successively added toR(r1). A high-
level memory analysis algorithm, such as [2], can deal with
this problem by observing thatA (i.e. [P0]) is declared as
an array, and therefore all its elements are represented by a
single element. Unfortunately, this information is not avail-
able at the low level. However, we can use the fact that
[P0] appears with offsets 0, 4, 8, etc. in the same points-to
set as a hint that[P0] is an array with elements of size 4.

As a general rule, whenever two abstract addresses of the
form 〈S, o1〉 and〈S, o2〉 appear simultaneously in a regis-
ter’s points-to set, whereo1 < o2, it is assumed that〈S, o1〉
is the start of an array with element sizeo2−o1. Since there
is no differentiation of elements of the same array,〈S, o1〉
is used to represent〈S, o2〉 (as well as any other address of
the form〈S, o1 + k · (o2− o1)〉. This can be accomplished
by calling the functionset stride from Section 3.4.1.

If there areN registers in the procedure, the above rule
ensures that at mostN different offsets can be in use for
each abstract structure. Since the number of abstract struc-
tures is bounded, the number of abstract addresses is also
bounded, and the algorithm’s termination is ensured.

3.5 Interprocedural Analysis

This section describes the interprocedural aspect of
Phase 1. Suppose that a procedureF is calling a proce-
dureG. Let MG andIG be the memory map and the set of
initial values of the callee respectively. These two sets com-
prise the callee’s transfer function. Also, letMF andIF be
the memory map and UIV set of the caller. When analyzing
the call fromF to G, the goal is to augmentMF andIF

according to the contents ofMG andIG respectively.
Obviously, the UIVs of the callee must be translated to

appropriate values in the caller. In general, asetof abstract
addresses in the caller’s context will be bound to each UIV



typedef struct T {
int data; T* next;

} T;

f(T* l) {
while (l != NULL)

...
l = l->next;

}

(a) List: source

f:
LOOP:

r1 = φ (param0, r2)
br r1 == 0 EXIT
...
r2 = mem[r1+4]
jump LOOP

EXIT:

(b) List: low-level

int A[100];

g() {
int *a = A;
while (...) {

... = *a;

...
a++;

}
}

(c) Array: source

A:
reserve 400

g:
r1 = A

LOOP:
r2 = φ (r1, r4)
r3 = mem[r2]
...
r4 = r2 + 4
br (...) LOOP

(d) Array: low-level

Figure 6. Termination over loops

referenced by the callee. Letβ be this mapping from callee
UIVs to sets of caller abstract addresses. LetB be a gener-
alization ofβ that maps callee abstract addresses to sets of
caller abstract addresses as follows:

B(〈S, o〉) =

{
{〈T, o + p〉 | 〈T, p〉 ∈ β(S)} if S ∈ IG

{〈S, o〉} otherwise

We initialize β by adding actual-to-formal binding for
the base UIVs, i.e. parameters and global variables. Then
we proceed to augmentβ and MF so that the following
constraints are met:

• The bindings to callee UIVs must be consistent with
the relative positions of the UIVs. That is, for two
UIVs U1, U2 ∈ IG, the following must be true:
If U2 = U1@o1 and 〈T1, p1〉 ∈ β(U1) and 〈T2, p2〉 ∈
MF (〈T1, p1 + o1〉), then 〈T2, p2〉 ∈ β(U2).

• Points-to arcs in the callee must translate to corre-
sponding points-to arcs in the caller. That is, for ev-
ery two abstract addresses〈S1, o1〉 and〈S2, o2〉 in the
callee, the following must be true:
If 〈S2, o2〉 ∈ MG(〈S1, o1〉) and 〈T1, p1〉 ∈
B(〈S1, o1〉) and 〈T2, p2〉 ∈ B(〈S2, o2〉), then
〈T2, p2〉 ∈ MF (〈T1, p1〉).

We ensure thatβ andMF obey these constraints by aug-
mentingβ andMF through simultaneous iteration, rather
than first computingβ and then proceeding to updateMF .
This is necessary in order to handle aliases between UIVs,
as can be seen in the example in Figure 7. In this example
the two parameters ofg have the same value. This means
that instruction 2, referencing the address〈[P0], 0〉, may
load the address of global variableB, which was stored at
〈[P0], 0〉 by instruction 1. Therefore after the call tog in f ,
global variableCmay point to eitherA or B. The translation
process goes as follows: At first〈LV, 0〉 is bound to both
[P0] and [P1], and〈A, 0〉 is bound to[P1]@0, marked as
(1) in Figure 7. These mappings will trigger the addition of
the points-to arcs〈LV, 0〉 → 〈B, 0〉 and〈C, 0〉 → 〈A, 0〉 to
MF (2). If we reexamine the bindings after these changes
toMF , 〈B, 0〉 will be now be bound to the UIV[P0]@0 (3).
Only now can the points-to arc〈C, 0〉 → 〈B, 0〉 be added to

MF (4). Since aliases among UIVs are rarely encountered
in practice, the iterative computation ofβ andMF termi-
nates quickly.

Note that the algorithms in [6] and [4] handle aliases be-
tween UIVs in significantly more complicated ways. We
can handle aliases in the way described above because of
our algorithm’s flow insensitivity with respect to memory
and because we do not perform strong updates.

Mf

Mg

[P0]

[P1]

C LVALV

[P1]@0 A

B

(1)

(3)

(1)

(1)(2)

(2)

(4)

[P1]

[P0]

[P1]@0

B

Binding

B

C

f:            g:
  mem[LV]=A      br (...) 2
  g(LV, LV)   1: mem[P0]=B
              2: r2=mem[P1]
              3: mem[C]=r2

f(){          g(int **a,int**b){
  int *x=&A;    if (...) 
  g(&x, &x);      *a=&B;
}               C=*b;
              }

(b) Low−level Code (c) Memory and Binding

(a) Source Code

int A, B, *C;

Figure 7. Example of interprocedural analysis
in the presence of aliases

4 Information Lost in IR Translation

One would expect that a low-level pointer analysis al-
gorithm would be less accurate than a high-level one, due
to information lost during IR lowering, such as type infor-
mation and high-level semantics. For the C programming
language, we find only one specific piece of lost informa-
tion to be relevant to pointer analysis. This is the start lo-
cation and the length of statically allocated arrays, which
include arrays statically allocated on the stack and arrays
that are fields within structures. This information is spec-
ified by array declarations and is typically not propagated
during lowering.

In some cases, the location and the length of a statically
allocated array are necessary to distinguish accesses to the



array from accesses to other data in the same memory re-
gion. The example in Figure 8 illustrates this problem. The
local variables of procedurefoo include an arraybuf of
50 bytes and a scalar variablex . Figure 8(c) shows one
possible layout of the local-variable (LV) section offoo , in
which x is placed abovebuf . Now consider instructions
s1 and s2 in Figure 8(b): the former accessesbuf in a
loop, whereas the latter accessesx . A high-level memory
analysis can easily conclude that there is no memory de-
pendence between these two instructions, since they access
different local variables.

foo(int size) {
  char buf[50];
  int i, x;

  for (i=0; i<size; i++)
    work(&buf[i]);
  scanf("%d", &x);
}

  foo:
    r1=0
  LOOP:
    br (r1>=P0) EXIT

s1: work(r2)

    jump LOOP
  EXIT:

s2: scanf("%d", r4)
    ret

    r2 = LV+r1

    r1 = r1+1

    r4 = LV+50

 (a) Source Code

 (d) Conservative stack layout

LV + 54

LV + 50

LV

 (c) Real stack layout

i
x

buf

LV

 (b) Low−level Code

buf

i

x

Figure 8. A C program, the corresponding
low-level, unannotated code, and its real and
conservative memory layouts.

On the other hand, low-level pointer analysis can deter-
mine the stride ofs1 ’s accesses, but not its bounds. There-
fore it has to assume thats1 may access the whole LV mem-
ory area, including the position allocated tox . This is illus-
trated in Figure 8(d), where boundaries between the stack
variables are not discernible. This will result in a spurious
memory dependence between instructionss1 ands2 . Al-
though sophisticated (and quite expensive) numeric analysis
can occasionally determine the bounds of an array access,
the problem is generally undecidable. In general, a low-
level memory analysis algorithm will be more conservative
than a high-level one due to array accesses.

Though our experimental results show that the impact
of this accuracy loss is negligible in practice, we propose an
inexpensive way to remedy it. Specifically, during the trans-
lation from a high-level to a low-level IR, load and store in-
structions that access array variables can be annotated with
the array’s bounds. For example, this would allow a low-
level points-to analysis to properly determine the indepen-
dence of accesses tobuf in Figure 8 from accesses to other
stack variables.

5 High Level vs. Low Level

The VLLPA algorithm from Section 3 is implemented in
the VELOCITY compiler, which is written in Java and com-
piled and run using Java version 1.5 from Sun MicroSys-
tems. The VELOCITY compiler uses an IR similar to IM-
PACT’s low-level IR, known as Lcode. This section eval-
uates the compile-time cost and accuracy of VLLPA with
respect to the algorithm implemented in the IMPACT [17]
compiler. The evaluation was performed on several bench-
marks from the SPEC95, SPEC2000 CINT, and Media-
bench benchmark suites. Each benchmark was first com-
piled to the Lcode IR by the IMPACT compiler’s front end
and then imported into the VELOCITY compiler.

5.1 Performance Evaluation

Benchmark # Procs # Opers # Indirect Time (s) Time (s)
Calls VLLPA IMPACT

epicdec 34 3998 0 0.770 0.116
g721dec 26 2396 1 0.035 0.150
g721enc 26 2395 1 0.036 0.091
gsmdec 94 11869 6 0.129 0.645
gsmenc 94 11869 6 0.146 0.472
mpeg2dec 114 10223 0 2.150 0.537
adpcmenc 3 288 0 0.071 0.061
adpcmdec 3 284 0 0.055 0.030
rasta 436 42500 7 3.880 2.428
099.go 372 55879 0 2.087 1.765
124.m88ksim 239 26663 3 4.584 1.357
129.compress 18 1211 0 0.268 0.0759
130.li 357 11953 4 14.843 73.340
132.ijpeg 473 33780 644 2.484 13.899
164.gzip 62 7346 2 0.764 0.339
175.vpr 255 25111 0 1.328 1.743
176.gcc 2220 463462 197 1495.318 1706.950
181.mcf 24 2157 0 0.285 0.1383
186.crafty 110 41370 0 1.543 0.694
197.parser 324 22686 0 2.835 3.388
254.gap 854 145017 1281 643.734 950.64
255.vortex 923 91864 15 12.107 42.330
256.bzip2 63 6725 0 0.485 0.2746
300.twolf 167 53950 0 1.567 1.136

Table 2. Benchmark Statistics

Table 2 shows the time taken by VLLPA on a 3GHz P4
with 512KB cache and 2GB of memory running RedHat
9.0. Note that this time is only the time needed to perform
the analysis and does not include the time to read or write
the IR. Analysis time, ranging from0.035sec to 24min, is
largely a function of the number of indirect call sites, the
size of SCCs, and the number of operations. For compari-
son, the time taken by IMPACT’s source-level pointer anal-
ysis, written in C and compiled using GCC on the same
machine, is also shown. VLLPA generally takes less time
than IMPACT’s analysis, in some cases significantly. This
appears to be due to implementation deficiencies in IM-
PACT’s analysis. In fact, due to these deficiencies, the cur-
rent implementation of IMPACT’s analysis cannot handle



253.perlbmkand produces incorrect dependence arcs for
176.gcc. As the analysis times for VLLPA show, a low-level
optimizer may apply our analysis multiple times at chosen
points without suffering prohibitive compile-time costs.

5.2 Accuracy Evaluation

Benchmark # Opers VLLPA Arcs Arcs w/ Array Info
w/ Arcs More Fewer More Fewer

099.go 13232 0 2393 0 2393
124.m88ksim 7161 4 2722 4 2722
129.compress 329 0 45 0 51
130.li 3762 33 720 33 724
164.gzip 1953 3 847 3 848
175.vpr 8166 97 1397 97 1402
181.mcf 705 7 199 7 199
186.crafty 12026 17 4751 17 4759
256.bzip2 1535 3 255 3 256

Table 3. Analysis precision measured on de-
pendence arcs vs. IMPACT (fewer arcs imply
better precision).

The accuracy comparison is made in terms of how effec-
tively each analysis can disambiguate memory operations.
Both the VELOCITY compiler and IMPACT use the results
of memory analysis to compute dependence arcs between
load/store and store/store pairs. In general, amoreaccurate
analysis algorithm will result infewerdependence arcs.

Rather than show the results for all 20+ benchmarks
from Table 2, we now focus on a representative set of bench-
marks from SPEC95 and SPEC2000 that avoid the imple-
mentation deficiencies of IMPACT’s analysis. The “VLLPA
Arcs” columns in Table 3 show the number of memory op-
erations for which our analysis results in more and fewer
dependence arcs (i.e. less and more precision respectively)
than [2]. On average, our analysis is less precise than [2] on
0.3% of memory operations, and more precise on 26.8% of
memory operations. This indicates that VLLPA does just as
well or better than a sophisticated high-level analysis.

The “Arcs with Array Info” column in Table 3 shows the
precision for each benchmark with VLLPA modified to uti-
lize the annotated array bound information, as discussed in
Section 4. As the results show, knowledge of array bound-
aries is not significantly important in practice, resulting in
no decrease in the number of memory operations for which
VLLPA produces less precise information than IMPACT on
any of the benchmarks tried.

6 The Conservative Dependence Propagation
Problem

This section illustrates the problem that arises from pre-
forming alias analysis at the high level. Specifically, depen-
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Figure 9. Dependence Arc Breakdown

dence arcs created by the high-level analysis must be propa-
gated by subsequent code transformations. Without knowl-
edge of how to perform additional memory disambiguation
at the low level, this propagation has to be performed con-
servatively, resulting in many spurious dependences. These
unnecessary dependence arcs may in turn limit the aggres-
siveness of later optimizations. Instruction scheduling can
be particularly hurt by this, since the extra dependence arcs
limit its ability to reorder memory operations. The effects
of spurious dependence arcs on performance will be studied
in Section 7.

In order to determine exactly how many spurious depen-
dence arcs are created due to the conservative propagation
of memory analysis information, the following experiment
was performed. We ran VLLPA on the IR produced by IM-
PACT at the final stage of compilation, after both high- and
low-level optimization has been performed. We then com-
pared the dependence arcs produced by our analysis with
those propagated by IMPACT from the high level. We gen-
erally expect our algorithm to produce fewer dependence
arcs, both because it does not suffer from the effects of con-
servative dependence propagation, and because it is gen-
erally more accurate than IMPACT’s high-level algorithm,
as seen in Section 5. To separate the two effects, we also
ran our algorithm on IMPACT’s IR right after lowering and
marked the dependence arcs that were generated by IM-
PACT but not by our algorithm. Subsequent code trans-
formations in IMPACT were modified to propagate these
marks along with the dependence arcs. The dependence
arcs present in IMPACT’s final stage were then classified
in three categories, as seen in Figure 9.

Correct: The propagated arcs that coincide with arcs iden-
tified by our analysis.

Unnecessary:Spurious arcs that result from the propaga-
tion of spurious high-level arcs. These arcs arise due
to the differences between the two memory analysis al-
gorithms, rather than due to conservative propagation.



Thus they are not relevant to this experiment.

Unnecessarily PropagatedThe arcs that are spurious at
the final stage, but are propagated from accurate high-
level arcs. These are the arcs introduced by inaccura-
cies due to conservative dependence propagation.

As shown in Figure 9, this final category of arcs accounts
for up to 50% of the arcs present at the final compilation
stage. This shows that repeating memory analysis at the low
level is significantly more accurate than propagating mem-
ory analysis information for the higher level. Conversely,
rerunning memory analysis at the low level would result in
37% to 79% fewer dependence arcs than IMPACT’s current
dependence propagation scheme. In other words, this ex-
periment shows that a low-level memory analysis algorithm
is a very useful tool in an optimizing compiler.

7 Impact of Different Memory Disambigua-
tion Schemes on Performance

Since the ultimate goal of pointer analysis is to facilitate
optimizations, this section evaluates the effect of pointer
analysis on performance. Specifically, we compare, for Ita-
nium 2, the cycle counts computed from profile-weighted
static instruction schedules of executables compiled un-
der three different configurations. The baseline configura-
tion uses IMPACT with simplistic pointer analysis, similar
to that run by GCC. Only intraprocedural analysis is per-
formed with simple instruction inspection, which includes
differentiating loads and stores with the same base register
but different offsets, or references to global vs. local struc-
tures. The second configuration applies IMPACT’s mem-
ory analysis algorithm at the high level and then propagates
memory dependence information through subsequent com-
piler phases. The third configuration recalculates memory
dependences by running VLLPA after most optimizations
are performed, but right before instruction scheduling and
machine-specific optimizations. The resulting performance
is shown in Figure 10.

As we can see, performing high-level pointer analy-
sis significantly improves performance, with an average
speedup of 8.3%. The more accurate pointer analysis pro-
vided by VLLPA increases the average speedup to 10.9%.
This is because our algorithm removes many spurious mem-
ory dependences, as seen in Section 5, thus giving the
scheduler more freedom to rearrange instructions.

Since IMPACT’s scheduler moves instructions only
within extended basic blocks (EBBs), spurious memory de-
pendences between EBBs (or the lack thereof) will not af-
fect performance. Table 4 classifies dependence arcs ac-
cording to whether they link instructions within the same
EBB (intra-EBB columns) or not (inter-EBB columns). The
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Figure 10. Speedup vs. Simplistic

columns labeled “Extra Arcs” refer to dependence arcs pro-
duced by VLLPA but not IMPACT, whereas the columns
labeled “Removed Arcs” refer to dependence arcs produced
by IMPACT but not by VLLPA. As we can see from this ta-
ble, the vast majority of spurious dependences removed by
VLLPA are inter-EBB, and thus of no use to the scheduler.
This is why the big differences in the number of memory
dependences shown in Section 5 translate to relatively small
performance differences for certain benchmarks. However,
inter-EBB dependence arcs can affect other code motion op-
timizations, as well as global schedulers, which are used by
other aggressively optimizing compilers.

8 Conclusion and Future Work

Pointer analysis provides memory dependence informa-
tion crucial for compiler optimizations. Currently, the dom-
inant approach to pointer analysis is to apply it on a high-
level IR that retains source language information. This ap-
proach is believed to be more accurate than a low-level
pointer analysis, which is thought to be hampered by the
loss of high-level semantics.

This paper is the first to provide a context-sensitive and
partially flow-sensitive pointer analysis that operates on a
low-level IR, and to evaluate the relative effectiveness of
high-level versus low-level memory analysis in an aggres-
sively optimizing compiler. Our results show that, for a C
compiler, a low-level memory analysis algorithm can be as
good as or better than a high-level one. The inaccuracy
caused by the loss of information when translating from
source code to a low-level IR is characterized, and found
to have a negligible impact in practice. Moreover, the avail-
ability of low-level pointer analysis eliminates the inaccura-
cies caused by the conservative propagation of memory de-
pendences through subsequent compiler phases, leading to
more efficient back-end optimizations. Thus this work es-



Benchmark Extra Arcs % Intra-EBB % Inter-EBB Removed Arcs % Intra-EBB % Inter-EBB

099.go 0 0.00 0.00 10799 0.74 99.26
124.m88ksim 7 0.00 100.00 42685 2.69 97.31
129.compress 0 0.00 0.00 110 0.00 100.00
130.li 65 73.85 26.15 13827 29.00 71.00
164.gzip 4 0.00 100.00 3535 0.85 99.15
175.vpr 155 7.09 92.81 9764 8.37 91.63
181.mcf 8 25.0 75.00 388 0.00 100.00
186.crafty 121 0.00 100.00 125684 11.0 89.00
256.bzip2 4 0.00 100.00 2256 1.42 98.56

Table 4. Properties of mismatching sync arcs

tablishes low-level pointer analysis as a feasible and worth-
while memory disambiguation scheme.
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