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ABSTRACT
Memory profiling is the process of characterizing a program’s mem-
ory behavior by observing and recording its response to specific in-
put sets. Relevant aspects of the program’s memory behavior may
then be used to guide memory optimizations in an aggressively op-
timizing compiler. In general, memory access behavior has eluded
meaningful characterization because of confounding artifacts from
memory allocators, linker data layout, and OS memory manage-
ment. Since these artifacts may change from run to run, memory
access patterns may appear different in each run even for the same
input set. Worse, regular memory access behavior such as linked
list traversals appear to have no structure.

In this paper we present object-relative translation and decomposi-
tion techniques to eliminate these artifacts and to expose previously
obscured memory access patterns. To demonstrate the potential of
these ideas, we implement two different memory profilers targeted
at different sets of applications. These profilers outperform the ex-
isting ones in terms of profile size and useful information per byte
of data. The first profiler is a lossless profiler, called WHOMP,
which uses object-relativity to achieve a 22% better compression
than the previously best known scheme. The second profiler, called
LEAP, uses lossy compression to get highly compact profiles while
providing useful information to the targeted applications. LEAP
correctly characterizes the memory alias rates for 56% more in-
struction pairs than the previously best known scheme with a prac-
tical running time.

1. INTRODUCTION
Feedback-directed memory optimization (FDMO) in compilers is
widely accepted as an important means to improve memory per-
formance [1]. Previous research has suggested optimizations such
as prefetching [2], speculative load reordering [3], cache-conscious
data layout reorganization [4] and others, all of which use memory
profiles to direct them. Memory profiling is the process of charac-
terizing a program’s memory behavior by observing and recording
its response to specific input sets, and then using the relevant as-

pects of the behavior to guide memory optimizations. Thus a good
memory profile is a key factor in the success of a particular FDMO.
In this paper we present techniques to improve memory profiling,
describe their incorporation into two different memory profilers,
and demonstrate their effectiveness in practice.

Typically, memory profilers collect memory access information in
terms of raw addresses (such as the trace-based memory profilers
[5] and others [4] [6]). However, there are significant barriers to
implementing an efficient profiler using this approach. In the raw
address space memory access patterns are obscured by confound-
ing artifacts from memory allocators and linker data layout. Figure
1 shows memory references in a linked list traversal and update.
While these references are simple and intuitive in the program, they
appear irregular in the profile due to seemingly arbitrary heap allo-
cations. Worse, these artifacts may change from run to run. First,
even a slightly different input set could lead to radically different
data footprint. Second, even for the same input set, a different al-
locator library could lay out the memory differently. Third, even
if the input and allocator are all the same, the insertion of probes
could change the code segment size and thus the linker data layout
of static data. Thus memory access patterns may appear different
in each run, and regular memory access behavior such as linked list
traversal may appear to have no structure at all.

The primary contribution of this paper is a new technique to elimi-
nate these artifacts that obscure memory access regularities. Specif-
ically, we present an object-relative translation and decomposition
method for effective memory profiling. Memory accesses are trans-
lated into instruction, group (object type), object serial number, and
offset to reflect the true nature of data objects in programs. This
object-relative approach enables decomposition of a memory ac-
cess stream to separate regular and interesting information from the
irregular and provide the compiler with information useful for op-
timization. This translation and separation is conceptually depicted
in Figure 2. In that figure, the original raw address stream appear
to have an irregular pattern. The next block in the figure represents
the translated object-relative stream, which looks slightly more reg-
ular but is a mixture of patterns. The right side of the figure depicts
the separation of the translated stream to identify regular access
patterns. The methods used to perform the conversion to object
relative references and to separate the patterns are described in the
next section.

The second contribution of this paper is the implementation of two
profilers, called WHOMP and LEAP, based on the object- relativity
to evaluate its potential benefits. The first profiler, WHOMP, uses
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Figure 1: An example illustrating confounding artifacts in memory references.

the Sequitur compression scheme [7] to collect a lossless profile
which records the entire data stream during the run of a program.
This profiler produces more compact profiles than the best known
existing lossless profiler using raw addresses. The second profiler,
LEAP, uses a lossy linear compression scheme to obtain a com-
pact profile indexed by load and store instructions. This profiler
outperforms the best known practical profilers [6] in identifying
load-store alias frequencies.

In the next section, we describe the object-relative technique and
show how it reveals previously hidden regularities. Sections 3 and
4 describe and evaluate the implementation of the WHOMP and
LEAP object-relative memory profilers. The paper concludes with
some related work and summary.

2. OBJECT RELATIVITY
Programmers using high-level languages generally think about data
not in terms of addresses, but in terms of objects1. Objects range
from simple types (such as integers), to aggregate types (arrays and
structured records), to instances of classes. All programming lan-
guages have the notion of objects, although their uses might vary.
In addition, most programs have many objects of the same type.
This is another source of regularity: objects of the same type tend
to be allocated and used in similar ways. We call the collection of
all objects of the same type a group. Intuitively, memory accesses
qualified by objects and groups can eliminate the memory artifacts
and reflect the true nature of the data in programs.

Using the definitions above, one can convert the raw-address form
of accesses to an object-relative form. Such a representation of
memory accesses allows interesting aspects of the memory behav-
ior of the program to be extracted.

2.1 Object-relative address translation
The concept of an object and a group are used to translate the raw-
addresses into a form which is more meaningful to the programmer.
Objects which are created at the same program point belong to the
same group and this can be identified by the compiler. Given a raw
address, a translation mechanism identifies the group and the ob-
ject being accessed (as represented by the group identifier and the

1Object here refers to a group of data stored as a unit (specific
structs and arrays in C for example) and should not be taken in the
object-oriented programming language sense.

object serial number). We also refer to the specific memory loca-
tion by the offset from the start of this object. Thus, for a memory
access collected by trace as a (instruction-id, address) pair, object-
relative translation computes the 4-tuple:

(instruction-id, group, object, offset)

This translation can be achieved using a variety of techniques which
maintain a database of allocated objects indexed by their raw ad-
dresses.

As an illustrative example, Figure 3 shows memory accesses dur-
ing a linked list traversal. Solid lines represent accesses to the data
fields of the list element (such as node � data) and dashed lines
represent accesses to the pointer fields (such as node � next). The
figure shows both the raw address stream and the corresponding
object-relative stream (with the group identifier 0 referring to ob-
jects of the linked list). It is observed that, compared to the raw
address stream, the object relative stream better highlights the pro-
gram’s memory behavior. For example, it shows that both instruc-
tions are accessing objects in the same group, which may imply
that all nodes traversed in the linked list are of the same type. Also,
all accesses by the same instruction refer to the same offset within
different objects, which is characteristic of accessing the same field
of structural records.

This example illustrates that the object-relative stream reveals ad-
ditional information not readily available in the raw address stream.
With the object-relative stream, the system can easily identify use-
ful patterns.

2.2 Object-relative decomposition: separat-
ing the regular from the irregular

In a memory access stream, regular and interesting memory access
information may be mixed with the irregular, which makes profile-
directed optimizations more difficult. To identify the regular ac-
cesses two manipulations, horizontal decomposition and vertical
decomposition, are applied.

Horizontal decomposition separates the stream into its dimensions,
namely instruction-id, group, object, and offset. This is illustrated
by the linked list example in Figure 3. Here we see that horizon-
tal decomposition allows one to consider one dimension at a time
across all the memory accesses. In other words, a single stream
of four tuples is split into four streams of individual tuple elements.
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Figure 2: A conceptual illustration of identification of regular
access patterns. (a) Original stream (b) Object-relative stream
(c) Regular accesses separated from the irregular ones.

The resulting pattern tends to be simple and more regular. This reg-
ularity in the pattern makes the resulting profile amenable to good
compression as will be shown in the later sections. This kind of
decomposition is beneficial when optimizations use only one or a
few dimensions of the stream. For example, object clustering [4] is
only concerned with the object dimension of the stream.

Vertical decomposition collects objects which share the same value
in one dimension (the same instruction-id, for example) and looks
at the values of these objects in the other dimensions. Figure 3
shows an example of vertical decomposition by instruction. Here
the original stream becomes two simpler sub-streams. Note that,
though not shown in Figure 3, these sub-streams can be further
decomposed into simpler sub-substreams. For example, further de-
composition by group gives a number of simpler (object, offset)
streams.

The decision to use horizontal or vertical decomposition depends
on the nature of the profile and how the profile information is used.
For example, memory dependence optimizations such as load spec-
ulation [3][8] require dependence information for specific load-
store pairs or data types. Vertical decomposition is more suitable
in this case as it can collect all information for accesses with the
same instruction-id. Contrast that with optimizations requiring in-
formation of a specific granularity, such as object clustering or field
re-ordering. In such cases, horizontal decomposition is more ap-
propriate. Multi-purpose memory profilers can employ a hybrid of
both techniques.

One problem with vertical decomposition is that it eliminates the
ability to directly index into the stream based on time. To cope
with this inconvenience, we extend the object-relative stream with
an additional dimension - time:

(instruction-id, group, object, offset, time-stamp)

where time-stamp is a counter starting from 0 at the beginning of
the program and incremented after every collected access. Any
tuple in the substream obtained by vertical decomposition is tagged
by its time-stamp and is therefore uniquely identified.

2.3 Incorporating object-relativity into a mem-
ory profiling framework

This sub-section presents a general framework from which specific
object-relative profilers can be viewed. Figure 4 shows this object-
relative framework. The primary addition to a standard memory
profiler is the object-management component (OMC). The OMC
records information about every object allocated in the program:
the time when it is allocated and de-allocated, the address range
used by the object, and the type of the object. Additionally, this
component assigns an identifier to every group and object that can
be used to identify them later in the program. Given an address, the
OMC identifies the group and object, and translates the raw address
into a (group, object, offset) triple.

The program is instrumented by inserting instruction and object
probes into the target program. The instruction probes are inserted
next to every load and store instruction. Every time a memory
instruction executes, the adjacent probe passes the instruction ID
and the memory address accessed to the control and decomposition
component (CDC, the details of which are described shortly). Ob-
ject probes are introduced at object creation and destruction points.
They collect the creation and destruction time, size, and type of
every object in the execution of the program, and pass this infor-
mation to the OMC.

The CDC acts as a hub to the profiling process. It receives infor-
mation from the instruction probes, and queries the OMC to make
the information object-relative. It then passes on the object-relative
stream to the separation and compression component (SCC).

As the name suggests, the SCC first separates the stream into mul-
tiple substreams (by horizontal decomposition, vertical decomposi-
tion, or both). It then sends the substreams into a steam compressor.
Examples of such compression schemes include linear compression
[9], Sequitur compression [10], and others.

The output of the SCC is a compressed raw-address profile in an
object-relative format. This can then be optionally fed into a post-
processor to get more refined, optimization-specific information.
The profiler can also output the object lifetime and other auxiliary
information from the OMC unit. This run- and alloc-dependent
information is separated from the invariant object-relative tuples
when it is useful to certain profile consumers.

The presented framework can be used as a foundation to many dif-
ferent object-relative memory profilers. Two such implementations
are described next.

3. WHOLE-STREAM MEMORY PROFILER
The object-relative profiling framework is used to create a lossless
whole-stream memory profiler (WHOMP), the first of two object-
relative memory profilers presented in this paper. This profiler
uses the lossless Sequitur compression scheme to record the entire
stream in object-relative format. This section describes WHOMP
and quantitatively measures the benefits it receive from the use of
object-relativity. The results of the implementation quantitatively
support our intuition that a good compression is a natural result of
the object relative approach.

3.1 WHOMP implementation
The WHOMP implementation follows the framework presented in
Section 2. WHOMP instruments the program by inserting instruc-
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Figure 3: An example illustrating the object-relativity, horizontal decomposition and vertical decomposition. The table presents
several ways of representing accesses to the linked structure at the top.
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tion and object probes directly into the assembly code. The instruc-
tion probes are inserted next to every load/store instruction. The
profiler inserts object creation/destruction probes at allocation/de-
allocation points for dynamically allocated objects2, or at the be-
ginning and end of the program for all statically allocated objects.
Interactions between the instrumented program and the CDC/OMC
components take place via thread-to-thread communication. The
profiler groups allocated dynamic objects by static instruction. The
compiler can provide type information to further refine this strat-
egy. WHOMP uses the exported symbol table from the gcc com-
piler to determine the size and group of statically-allocated ob-
jects. Since static analysis handle stack variables very efficiently,
we chose not to profile them. To speed up the lookup process in the
OMC, the profiler uses an auxiliary B-tree-like data structure which
stores the range of addresses that each object takes up. When the
program de-allocates an object, the profiler removes elements from
this tree.

The CDC translates the raw address stream into an object-relative
stream, representing addresses as a five tuple (instr-ID, group, ob-
ject, offset, time-stamp). It then passes the stream to the SCC. The
SCC first decomposes the object-relative stream horizontally along
all four dimensions (instruction ID, group, object and offset). Each
of these streams is then fed into a separate Sequitur compressor.

The Sequitur compression scheme used in WHOMP was developed
by Nevill-Manning and Written [7]. It encodes input data stream
as a context-free grammar based on its repeating patterns. The
compressor scans the input sequence and builds the grammar in-
crementally. Each repetition gives rise to a rule in the grammar and
every repeated subsequence is replaced by a non-terminal symbol,
producing a more concise representation of the whole sequence.
For example, the sequence of symbols “abcbcabcbc” will be com-
pressed into the grammar:

� ��������� ���
	�	�� 	 ����

We refer to the above grammar as Sequitur grammar in later dis-
cussions.

3.2 Evaluating WHOMP
We evaluated the performance of WHOMP by collecting WHOMP
profiles for 7 SPEC benchmarks. We believe these programs form
a representative set as they display a range of memory behavior.
All experiments were run on an IA-64 Itanium machine (HP-I2000
Itanium workstation, with 1GB of RAM, Linux RedHat7.0, Kernel
version 2.4.3), using the training input sets.

The output of WHOMP is an object-relative multi-dimensional Se-
quitur grammar (OMSG), with one grammar formed for each of the
decomposed streams. Both the OMSG and the conventional raw
address Sequitur grammar (RASG) are lossless. They both contain
information about repeating memory access patterns, which is use-
ful for a class of correlation-based memory optimizations including
clustering, custom heap allocation[4], and hot data stream prefetch-
ing [11]. However, OMSG provides some additional benefits over
the traditional RASG, as discussed next.

2We choose to treat custom alloc pools as single objects. An al-
ternative is to manually target the custom alloc/dealloc functions
rather than target the standard malloc/free, depending on the ap-
plication and use of the profile information. The profiler can be
parameterized to handle this.
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Figure 5: The compression ratio of the OMSG over the conven-
tional raw address Sequitur grammar.

OMSG can be more compact than a Sequitur-compressed raw ad-
dress stream profile. This is due to the exposed regularity and the
multi-dimensional decomposition, which causes the substreams to
have a much simpler pattern to compress, as compared to the origi-
nal raw address stream. Simpler and more regular pattern lead to a
better and smaller grammar, and hence a higher compression ratio.
Intuitively, the linked list example in Figure 3 illustrates this idea
as simple regular expressions can be used do describe the object
sub-stream. Of course, for this simple example, since the patterns
are short, the effect of compressing into multiple grammars is not
pronounced. However, for a real data stream in practice, the ad-
ditional regularity can yield better compression and make the total
size of OMSG smaller.

To compare the performance of OMSG, we also generate the con-
ventional RASG using the raw address stream (similar to the gram-
mars in [4]). We then compute the percent of compression achieved
by OMSG over RASG, using the RASG size as the base. Figure 5
shows the experiment results. On average, OMSG is 22% more
compact than RASG.

Even though the object-relative method has the additional overhead
of translating raw addresses into the object-relative format, on av-
erage profile collection time is roughly the same (OMSG is 1%
faster than RASG). This indicates that the time spent extracting the
object relativity information is offset by the gains in Sequitur’s pat-
tern search due to the regularity in the stream. The details on the
Sequitur algorithm and its pattern search can be found in [7].

Another benefit of OMSG is the production of refined, fine-grained
information for optimizations. The grammar for each dimension is
useful for a different set of optimizations. For example, the offset-
level grammar can be used for optimizations like field-reordering [4].
A frequently repeated offset sequence, say � �
��������� , along with
the object lifetime information (recall from the last section that
this was not discarded), may reveal field-reordering opportunity to
the compiler to take advantage of spatial locality in the reference
stream. Another example is the use of object-level grammar for
object clustering or global variable re-mapping [4]. Optimizations
also have the option to simultaneously access two or more dimen-
sions of the OMSG. Therefore, the fine-grained, object-relative,
multi-dimensional grammar provides extra flexibility and adapt-
ability to memory optimizations.



4. LOSS-ENHANCED ACCESS PROFILER
The previous section illustrated an inherent benefit of the object-
relative approach, namely good compressibility of the profile. How-
ever, the lossless profile obtained with WHOMP comes at the price
of long running times and huge profile sizes even after compres-
sion. With the observation that losing some portion of the profile
information may not affect the outcome of a given task, we im-
plement a Loss-Enhanced Access Profiler (LEAP) targeted to two
specific applications. We evaluate LEAP in the context of these ap-
plications to demonstrate the benefits of object-relativity in a lossy
profiler.

LEAP uses linear compression and collects profile indexed by load
and store instructions. We target two optimization techniques: spec-
ulative load reordering [3, 8] and stride-based prefetching [2]. Spec-
ulative load reordering is a technique that speculatively schedules
a load instruction ahead of a preceding store to hide the memory.
This reordering is beneficial only if the load is independent of the
store or is dependent with a low frequency, because of the rela-
tively high recovery overhead. Hence this optimization requires a
very good estimate of dependence frequencies between loads and
stores. The other optimization, stride-based prefetching, performs
prefetching for strided memory accesses. To facilitate this, strongly
strided instructions - instructions which access memory with one
particular stride most of the time - must be identified.

4.1 LEAP implementation
The implementation of this profiler is similar to that of the loss-
less WHOMP discussed in the previous section. In WHOMP, af-
ter translating the raw addresses into the object-relative form, the
SCC decomposes the stream vertically by instruction id and then
by group to get a number of (object, offset, time) streams. These
streams are then sent to a linear compressor, which is discussed in
detail later. Since some complex streams may be difficult to repre-
sent compactly, the profiler discards some information so that the
resulting stream is compactly represented. This makes the profiler
lossy. The (object, offset, time) sub-streams are also decomposed
horizontally. We use these mixed sub-streams to record additional
aspects of the memory reference behavior.

This profiler uses a simple linear compressor, which is based on the
linear memory access descriptor (LMAD) model in [9]. A LMAD
is described by the triple [ start, stride, count ]. Note that start and
stride can be

�
by

�
vectors, where

�
is the number of dimensions

in the stream that is compressed. For example, for the (object, off-
set, time) sub-streams, the value of

�
is
�
, while for the (offset)

sub-streams, the value of
�

is
�
. The LMAD compression reads

each symbol in the data stream and attempts to describe the stream
using its linear descriptors. If the new symbol does not fit into the
current linear pattern, it will start a new LMAD for this symbol.
For example, an offset stream of

�
��� � � �
������� ����� ��� ��� � ��� ������� � � �

will be described by two LMADs as	 �
��� � � ��
 � 	 � ���
����


To get a compact profile with a practical running time, we can only
allow a finite number of LMADs. Reducing the number of LMADS
will reduce the running time, but affect the profile quality. Increas-
ing the number of LMADs gives a less lossy profile but increases
the running time. In our implementation, we chose a maximum

of 30 LMADs for a given (instruction-id, group) pair. This num-
ber was found to be suitable for our applications and to keep the
running time low.

This linear compression scheme has several attractive properties. It
is simple and fast, and it works quite well if the data stream has pre-
dominantly linear patterns. We notice that, in practice, a significant
portion of instructions do exhibit linear access behavior and hence
can be captured by a small number of LMADs. The biggest disad-
vantage of the linear compression scheme is that it cannot handle an
elaborate access pattern, especially if the stream exhibits predom-
inantly non-linear behavior. In such a case, the allowed maximum
number of LMADs will be quickly exhausted. The compressor
will then discard the new symbols in the stream, and only record
some overall information such as  ��� , �� � , and ��� � ����� � ������� .
So, for such a case, the information stored in LMADs is essen-
tially a sample of the initial part of the original data stream. We
use the term sample quality to refer to how much information is
captured in LMADs, with respect to all information in the original
data stream. For example, the sample quality for a predominantly
linear stream can be � � � ���

, while � ���
for a predominantly

non-linear stream. A low sample quality may also be acceptable
if most of the linear access patterns are captured as the targeted
optimizations rely mainly on the linear access patterns.

4.2 Evaluation of the LEAP
This subsection presents the evaluation of the LEAP profiler in the
two target applications. Since the profiler is lossy, the potential
benefits accrued to the targeted optimizations are a more suitable
evaluation metric than the compression ratio.

The experiments are conducted for the same set of SPEC2000 bench-
marks as before. For each benchmark, LEAP is run once to collect
the LMADs. Two different post-processors use these LMADs to
compute memory dependence frequency and strongly strided in-
structions respectively.

4.2.1 Application 1: Memory dependence frequency
As described earlier in this section, the memory dependence fre-
quency profile is useful for memory optimizations such as spec-
ulative load re-ordering and loop-invariant load removal. In this
sub-section, we evaluate how well the LEAP profiler can capture
the memory dependence frequency information for all store-load
pairs.

We apply a memory dependence detection post-process to the col-
lected LMADs. We restrict our attention to the read after write de-
pendence. So we define a pair of � ��! �#" instructions as conflicting
if the � � accesses location � at a time �%$ while the

�#"
accesses the

location � at a later time ��& ( � �(' � � ). The memory dependence
frequency (MDF) for a �)� � ���*"
� pair is computed as

MDF for �)�%� �+�#"
�-, # of conflicts with � �
Total # of exec for

�#"

Because of the linear structure of LMADs, the above computation
can be sped up using some omega-test-like linear programming al-
gorithms [12]. For example, detecting the location conflicts in-
volves solving integer solutions ./$ � . & for

�%� � ���0$213�%���4� "�5 $6.7$ , � � � ��� & 18� �9��� "�5 & . &
. $;: �0< � � � $ .�& : �0< � � �+&



Because the LMADs profile is relatively small, our post-process
computation is fast. For SPEC2000 benchmarks, the post-process
time ranges from seconds to several minutes.

The output of the analysis is a list of dependent store/load pairs
along with the computed dependence frequency for each. For ex-
ample, �)� ��& ���#" $ ��� � � � , �)� � � ���#" $ �+����� � shows that a static

�#" $ is
dependent on a static � � & for 10% of its execution, while it is de-
pendent on � � � for 90% of its execution.

Since LMAD compression is lossy, we evaluate the error distribu-
tion with respect to a lossless profiler. We used a lossless raw-
address based profiler which records the dependence information
of all the memory operations in a program as the baseline. Such
a profiler is extremely slow and produces huge profiles. Figure 6
shows the error distribution for LEAP for all benchmarks. Notice
that a dominating majority (75%) of the dependent pairs either have
frequencies that are completely correct (center point) or off by no
more than 10% (the points on either side of center).

We also compare the performance of LEAP to another existing
memory dependence profiling approach by Connors [6], which uses
raw address streams instead of object-relative streams. This pro-
filer is the best known memory dependence profiler with a practi-
cal running time and memory footprint. We perform exactly the
same evaluation as the one above but this time we compare the
ideal with our re-implementation of the instruction-indexed pro-
filer in [6]. (Instruction-indexed is recommended by authors in [6],
and we chose a window size such that it exhibits a running time
similar to LEAP.) The error distribution produced is shown in Fig-
ure 7. While not overestimating the frequency for any dependent
pairs, this scheme often misses some of the dependences as it iden-
tifies dependences only in a small window of instructions based on
addresses recorded in a small history window.

To provide an easy to read comparison, we show the average er-
ror distribution for all benchmarks using both approaches in Figure
8. Observe that LEAP out-performs the other approach by a large
margin. In particular, note the 56% improvement in the number of
pairs detected completely correct or off by no more than 10%. This
is likely to result in improved optimizer performance as Chen [3]
demonstrates that better dependence analysis leads to better opti-
mization/scheduling. Thus, due to the exposed regularity of ac-
cesses, the object-relative approach proves to be more amenable to
compression (as shown later) - without sacrificing accuracy signif-
icantly in this application.

4.2.2 Application 2: Memory stride patterns
Here, we show that LEAP collects memory stride profile nearly as
accurately as a specialized stride profiler (like the one in [2]), de-
spite the fact that LEAP also collects information which is amenable
to many optimizations but not particularly well-suited for the pur-
pose of collecting memory strides. We do this by evaluating how
well the LEAP profiler captures memory stride patterns and identi-
fies the strongly-strided instructions. We adopt the definition of the
(single) strongly-strided instruction in [2] – an instruction for which
one stride accounts for

��� ���
of its total accesses. With the col-

lected LMADs, identifying strongly strided instructions requires a
trivial post-process which examines all offset strides captured for
a given instruction. We choose to consider only those strongly
strided instructions within objects (i.e. with identical group and
object IDs), as we found an overwhelming majority of strongly-
strided instructions occurred within objects (One of the reasons
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Figure 6: The error distribution of the LEAP memory-
dependence results.
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Figure 7: The error distribution of the Connors memory-
dependence results.
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Figure 8: A comparison between the average error distribu-
tions of the LEAP and Connors profilers. The higher the peak
at 0% error, the better.
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Figure 9: Stride score for LEAP.

might be treating the custom allocation pools as single objects –
see the footnote in Section 3.1). An extension to include strongly
strided instructions across objects can be implemented by using the
auxiliary object lifetime information, which is run/alloc dependent
though.

To evaluate the quality of the stride data, we compare the identified
strongly-strided instructions to the “real” ones, which are found by
the equivalent lossless version. We re-implement the stride profil-
ing in [2] with a setting to make it lossless and track all the strides
for a given instruction (which is extremely slow because of the huge
amount of stride information to be tracked). The bars in Figure 9
show the percent of correctly identified instructions over the “real”
ones. We see that on an average

� � �
instructions are correctly

identified over all benchmarks.

4.2.3 LEAP profile size and speed
For the sake of completeness, we now present some more basic
metrics about the LEAP profiler. These metrics provide some in-
sight into the efficiency of the LEAP implementation in terms of
profile size, speed, and sample quality. From Table 1, several inter-
esting observations can be made.

First, the LEAP profile is quite compact. LEAP achieves an average
of 3 orders of magnitude compression relative to the trace. Second,
the time dilation (or the slowdown) over the native is acceptable. At
11.5 times the native, this number was acceptable for experimenta-
tion. Further optimization for speed (by specializing for a particular
architecture’s performance counters for example) was deemed un-
necessary for our purposes. In practice, improvements in speed can
be made by probe optimizations. Here, we inserted probes directly
into the IA-64 assembly even when other means could have been
used to determine behavior statically and used multiple threads to
collect and analyze data. Thread synchronization added profiling
overhead, but this was done for ease of implementation.

The third observation is that LEAP captures nearly half of all mem-
ory accesses. The sample quality metric is composed of the frac-
tion of captured accesses and the fraction of captured instructions.
The former is the fraction of all memory accesses in the program
what were captured by LMADs at the level of offsets inside objects
(not including the timing information). The latter is the fraction
of instructions whose behavior could be completely captured by all
LMADs. These numbers are significantly lower (on average 47%
and 41%) than fractions presented for correct memory dependence

Table 1: LEAP profile size, speed, and sample quality.

Benchmarks Compre- Dila- Sample Quality
-ssion tion Accesses Instructions
Ratio Factor captured(%) captured (%)

164.gzip 1169x 15 57.1% 40.8%
175.vpr 3935x 16 34.7% 52.8%
181.mcf 9993x 7 6.5% 40.8%
186.crafty 967x 9 50.3% 41.7%
197.parser 667x 7 76.3% 8.2%
256.bzip 7152x 14 31.6% 50.6%
300.twolf 856x 15 66.5% 39.8%
Average 3539x 11.5 46.5% 40.5%

and stride data determination in the last two sub-sections (on aver-
age 75% and 88%). This observation shows that the LEAP profile
is relatively efficient at representing useful information per byte of
output. In addition, it illustrates the fact (also stated in [10]) that
it is not necessary for a good profile to capture all memory access
information, as long as it captures useful information relevant to
optimizations.

5. RELATED WORK
In this section, we highlight important related work. Previous work
in [13], [4] and [10] are closely related to this work in the sense
that they all deal in profiling using objects. This work, however,
directly addresses and generalizes the use of objects in memory
profiling and studies this approach in depth.

Calder et al. [13] proposed a novel data object placement algo-
rithm, called Cache-Conscious Data Placement (CCDP), for the
purpose of reducing the frequency of data cache misses. CCDP re-
assigns virtual addresses to data objects, where a data object can be
a global variable, a heap object, or the whole stack. To facilitate
CCDP, a profile is generated listing all data objects encountered
during execution along with information of data objects’ reference
count, size, and other life-time information. Clearly, the object pro-
file in [13] examines how objects are managed and used during the
execution. By contrast, the object-relative profile proposed in this
paper is a generalization with emphasis on object-relative transla-
tion, decomposition, and compression in the context of a wider set
of optimizations.

Rubin et al. [4] proposed an efficient profile-analysis framework
for data layout optimizations. As part of their framework, the mem-
ory profiler collects a data-object trace. There, the data object is
defined as an elementary piece of data, which can be a field of a
record, a global variable or any other single-access granularity ob-
jects represented by a global identifier (a unique object ID). They
use this object identifier along with the raw address as a pair to
identify memory references. While this representation is useful in
eliminating false aliasing due to the reuse of the memory addresses
for different objects, it does not convey the relationship between an
object and its fields. In contrast, objects defined in this paper are a
part of the hierarchy of (group, object, offset) tuples, which yields
an explicit view of the data structures, the fields, and their common
properties. Also, since our scheme has factored out the raw ad-
dresses from the representation, identifying patterns becomes eas-
ier and the profile exhibits higher compression rates.



Chilimbi [10] proposed an efficient representation of the memory
access stream for the purpose of quantifying and exploiting data
reference locality. As part of the effort to reduce the size and pro-
cessing time of a profile, he proposed an address abstraction, which
abstracts the address to a name or an identifier. For example, a heap
object is abstracted into a (start address, global identifier) pair. This
identifier pair does not have a size or a type associated with it and
it does not distinguish the individual fields within a heap object.
Therefore, the address abstraction in [10] results in coarse-grained
memory profile information. All offset information is discarded,
making it impossible to regenerate the address trace once these ab-
stractions have been applied [10]. In contrast, the techniques pre-
sented in this paper do not discard any information while exposing
regularity.

6. CONCLUSION AND FUTURE WORK
This paper presents object-relative translation and decomposition
techniques to expose previously obscured memory access regulari-
ties for effective memory profiling. It also describes and evaluates
two memory profilers built using these ideas.

Object-relative translation translate raw address to a 4-tuple (In-
struction ID, group, object, offset). These tuples can be decom-
posed in different ways to extract information useful to the target
application.

To illustrate the value of these ideas, we apply them to two mem-
ory profilers, WHOMP and LEAP. WHOMP is lossless and gives a
complete stream of the memory accesses in the form of the above
mentioned tuples. LEAP is lossy and collects compact profile which
can easily used to identify load-store dependence frequency and
stride information.

Experiments show that object-relativity leads to a profile with more
compact representations, and with more useful information for sev-
eral common memory optimizations. WHOMP achieves an aver-
age 22% better compression over another lossless profiler using
raw-addresses. The LEAP profiler, which produces a profile 3 to
4 orders of magnitude smaller than the original data trace, can cor-
rectly estimate the memory dependence frequency for

��� �
of in-

struction pairs (which is
� ���

more than an existing approach), as
well as identify

� � �
of strongly-strided instructions.

Future work includes integration of this memory profiler into an
industrial-strength compiler. First, the compiler can improve pro-
file performance by eliminating the need to collect the information
known statically. Second, the compiler can provide a framework
for FDMO enabled with object-relativity. Another avenue to ex-
plore is to make use of recent results on phase detection and pre-
diction [14] to profile references in a phase cognizant manner.
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