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Abstract. Alias analysis, traditionally performed statically, is unsuited for a dy-
namic binary translator (DBT) due to incomplete control-flow information and
the high complexity of an accurate analysis. Whole- program profiling, however,
shows that most memory references do not alias. The current technique used in
DBTs to disambiguate memory references, instruction inspection, is too simple
and can only disambiguate one-third of potential aliases. To achieve effective
memory disambiguation while keeping a tight bound on analysis overhead, we
propose an efficient heuristic algorithm that strategically selects key memory de-
pendences to disambiguate with runtime checks. These checks have little runtime
overhead and, in the common case where aliasing does not occur, enable aggres-
sive optimizations, particularly scheduling. We demonstrate that a small number
of checks, inserted with a low-overhead analysis, can approach optimal schedul-
ing, where all false memory dependences are removed. Simulation shows that
better scheduling alone improves overall performance by 5%.

1 Introduction

Dynamic Binary Translators (DBTs) are used to provide binary compatibility across
platforms. For efficient execution, the translated binary must be re-optimized for the tar-
get microarchitecture. This paper focuses on techniques that allow memory disambigua-
tion to be performed in a DBT, enabling advanced optimizations, such as load/store
reordering and redundant memory operation elimination, that rely on aliasing informa-
tion. However, traditional static pointer/alais analysis [1, 2], is expensive both in time
and memory, making it unsuitable for DBTs where contention for runtime resources
with the program execution itself needs to be kept to a minimum. Additionally, for cor-
rectness, the analysis must know all control flows or it becomes overly conservative.
Since control flows in DBTs are discovered on the fly as each new branch target is be-
ing translated, accurate pointer analysis would require recomputation, taking yet more
time that is not available [3–5].

Given the difficulties of performing a full-fledged pointer analysis at runtime, most
DBTs, such as Dynamo [3], Transmeta [4], and Daisy [5], do not perform pointer
alias analysis except in the form ofinstruction inspection, a simple dependence test



that disambiguates two memory references if they access either different memory re-
gions or their addresses have the same base register and different offsets. While our
whole-program profile of the SPECINT2000 benchmarks indicates that 97% of mem-
ory reference pairs do not alias, instruction inspection can only disambiguate one-third
of them. Without a more sophisticated disambiguation mechanism, the optimizer has to
conservatively assume dependences between the other memory references. These false
dependences1 greatly constrain the aggressiveness of various code transformations.

To provide better memory disambiguation for runtime optimizations while keeping
a tight control over runtime analysis costs we only attempt to disambiguate specific
memory references that actually hide optimization opportunities. This is in contrast to
performing pointer analysis on all memory references. In particular, we design a sim-
ple heuristic algorithm that precisely selects memory dependences whose removal may
result in shortened instruction schedules. It does so without having to recompute the de-
pendence graph and compare the before-and-after schedules. Correctness is guaranteed
by inserting runtime checks that dynamically compare the effective addresses of the
memory references involved. To maximize the benefit of each runtime check, we per-
form a light-weight but effective pointer analysis to identify all memory dependences
that can be safely removed either directly or indirectly by a single check. For this to
work correctly, the runtime check must take into account different offsets of each mem-
ory reference, using dynamic address profiles to reduce misspeculation.

We evaluated our technique and experimental results show that only a small num-
ber of checks need to be inserted to yield performance gain. Specifically, our technique
can remove more than twice as many false memory dependences as does instruction in-
spection and generate schedules close to the optimal schedules, where all false memory
dependences are removed. Finally, this is done with very low analysis overhead.

In summary, the main contributions of this work are:

– An efficient heurisitic algorithm that precisely identifies memory dependences whose
removal can benefit scheduling to the greatest extent.

– A light-weight pointer analysis that allows as many dependences as possible to be
safely removed by a single runtime check.

– An evaluation of our technique that compares with baseline, instruction inspection
and optimial scheduling.

We discuss related work in Section 2. Sections 3 and 4 present the heuristic de-
pendence selection algorithm and the light-weight pointer analysis. Section 5 describes
how the test condition for each runtime check is determined. Evaluation methodology
and experimental results are discussed in Section 6. Finally, we conclude in Section 7.

2 Related Work

The idea of speculatively disambiguating memory references and relying on runtime
tests to guard against misspeculation is not new. The work closest to ours is Nicolau’s

1 In this paper, ”false dependence” refers to a dependence that does not occur at runtime, not
anti-dependence or output dependence in the traditional data dependence terminology.



run-time disambiguation[6], where the compiler inserts branches that test for aliasing
conditions. It relies on trace scheduling to schedule the on-trace path aggressively, as-
suming that the aliasing conditions are not met, and to insert compensation code in the
off-trace path for correctness. This is illustrated by Figure 1. The original code on the
left contains a read-after-write (RAW) memory dependence. However, if a check com-
paring the two addresses is inserted, then in the common case where the addresses are
not equal, the load instruction can be moved above the store. Huang et al. [7] describe a
similar technique targeting architectures that support conditional execution. Instead of
explicit branches, it uses predication to guard the execution of the two paths. Fernandez
et al. proposespeculative alias analysis[8], which is more precise along the hot paths
but may not be correct with respect to the whole control flow graph. Any optimization
enabled by this analysis requires similar check-and-recovery mechanism.

... = M[r2]

M[r1] = ...

if r1 != r2

y n
M[r1] = ...

... = M[r2]

M[r1] = ...... = M[r2]
RAW

Fig. 1.Example of Runtime Memory Disambiguation

In order to control the code growth resulting from the introduction of extra execu-
tion paths, it is important to narrow the set of runtime tests to those that are essential
to performance gains. Fernandez et al. [8] does not provide any mechanism to do so.
Nicolau [6] skips memory references that can be disambiguated statically with tradi-
tional alias analysis and memory references between whom there exist other types of
dependences that cannot be removed by runtime disambiguation. Huang et al. [7] uses
an iterative heuristic that, after each memory dependence is selected for runtime dis-
ambiguation, recomputes the critical path and the estimated execution time before and
after removing a dependence for each of the remaining memory dependences. Unlike
these two works, both of which are compiler techniques and therefore can afford the
cost of a traditional alias analysis or an iterative heuristic, our technique has to meet
the much tighter analysis budget in a runtime environment. Not only is our heuristic for
selecting critical memory dependence more streamlined and efficient, but also we use
light-weight pointer analysis to maximize the coverage of each runtime test.

Data speculation that moves loads above potentially aliasing stores also exists in
other DBTs, but relies on special hardware in the target architecture for detecting and
recovering from misspeculation. DAISY [5] has a specialload-verifyinstruction. Placed
at the original position of the speculative load, it reloads the value to compare with the
speculatively loaded value and traps to the virtual machine manager if the two values
differ. The drawback is that the extra loads executed consume memory bandwidth and
energy. Transmeta [4] has a small cache calledalias buffer, which records the addresses
and sizes of speculative loads to compare with later stores for aliases. In this approach,
the number of speculative loads is limited by hardware size and false positives may
arise as the result of aliasing with unreachable stores. Our approach does not assume



any hardware support and does not suffer from these problems. Neither of these two
works performs analysis like ours to select the most beneficial loads for speculation.

3 Critical Memory Dependence Selection

3.1 Preliminary Selection

Before applying the heuristic algorithm to identify memory dependences critical to
scheduling, several preliminary steps are taken to prepare a group of candidates.

1. Trace selection:We only want to disambiguate memory references in frequently
executed code. Hot code identification often comes for free in DBTs as most of
them are organized into two phases. The first phase translates blocks of code with-
out optimization and inserts instrumentation to collect execution frequency infor-
mation. The second phase forms hot regions from frequently executed blocks and
applies optimizations to them. Unlike the profiling done in the compilers, which
may suffer from the problem of unrepresentative input sets, the profile information
collected by DBTs in the first phase is highly relevant to the optimizations done in
the second phase. In most DBTs, the hot regions are single entry and multiple exit
traces. In our evaluation, the average finishing rate, the probability the trace finishes
execution in the last of its constituent blocks, is 88%.

2. Instruction inspection: Instruction inspection is performed on each trace to filter
out memory reference pairs that definitely do not alias. We then build the depen-
dence graphs of the traces and label each dependence edge with its latency.

3. Alias profiling: For those memory references in the traces that cannot be deter-
mined to be independent by instruction inspection, instrumentation is inserted to
record the effective addresses accessed. The heuristic algorithm will not consider
memory reference pairs that actually alias. We find that the aliasing behavior is
highly stable throughout the lifetime of a program. That is, a very short inital pro-
filing period yields essentially the same prediction of alias/non-alias as does whole-
program profiling. For example, the length of the alias profiling period can be set to
end after a trace finishes execution in its last block 50 times. The profiling overhead
thus incurred is negligible.
For the SPECINT2000 benchmarks, true aliases that can be filtered out this way
are at most 3%. For other workloads, alias profiling might turn out to be more
useful. In addition, the effective addresses collected by alias profiling are also useful
later when guiding the determination of appropriate test conditions for the runtime
checks. This is discussed in Section 5.

3.2 The Heuristic Algorithm

The goal of the heuristic algorithm is to narrow the number of runtime checks inserted
per trace to just 1 or 2 and no more than 3 for the occasional large traces. Our experi-
mental results indicate that this is sufficient to improve scheduling to close-to optimal.
Given the small number of memory dependences that are to be removed, the kind of
iterative algorithm proposed in [7], which involves recomputation of critical paths and



estimated execution time, is not necessary. After removing only a couple of dependence
arcs, we do not expect the memory dependences remaining on the new critial path to be
drastically different from what has been there on the original critical path. In addition,
we can simply use the latency of each dependence edge to approximate the difference
between the execution time of the trace before and after the edge is removed. Based
on these reasonings, the basic idea of our heuristic algorithm is to simply pick memory
dependences that are responsibile for the largest latency on the original critical paths.

Selecting Critical Base Address PairsWe start by grouping memory instructions ac-
cording to theirbase addresses. This is done through simple syntactic inspection of the
memory operands of each instruction. In the x86 ISA, memory addresses are specified
by the expressionsbase reg + index reg ∗ scale + offset, wherescale andoffset are
constants. By base address, we refer to the part of the expression that involves registers,
ignoring the constant offset. Memory instructions accessing constant addresses (i.e. no
base addresses) are gathered in the same group.

The intuition behind this is the observation that a trace often contains multiple mem-
ory references with the same base address but different offsets. If the registers involved
in the base address are not redefined in between these references or if it can be proven
that the redefinitions always write the same values into those registers, then a single run-
time check examining the runtime value of the base address can allow multiple memory
dependences to be removed. For example, both the registers EBP (frame pointer) and
ESP (stack pointer) are used as the base register and combined with various displace-
ments to access stack locations. In compiler-generated code, stack references with either
EBP or ESP as the base register almost never alias. Using a single runtime check that
compares the positions pointed to by EBP and ESP and the proper test condition that
takes into account all relevant displacements, we can often remove numerous depen-
dences from a trace that cannot otherwise be disambiguated by instruction inspection
because the base registers are different. Section 4 describes the analysis needed for
proving runtime equality of two occurrences of a base address expression. Section 5.1
discusses how to handles multiple displacements from a base address.

In the next step, the algorithm traverses the dependence graph computed based on
instruction inspection to do two things: 1) to identify critical paths, 2) for each pair of
base addresses, to sum the latencies of all memory dependence arcs that are false de-
pendences according to the alias profiling and whose source and destination instructions
fall into the two groups of base addresses respectively. We useTotal Latenciesto de-
note this value. Next, the algorithm computes another value similar toTotal Latencies,
the only difference being that only memory dependences on the critical paths are con-
sidered. We call this valueCritical Latencies. Figure 2 (a) contains a small trace whose
dependence graph is shown in Figure 2 (b). The dependence arcs are marked with laten-
cies computed based on the machine model. Arcs with latencies in brackets are mem-
ory dependences, the rest are register dependences. Among the four memory instruc-
tions, there are three distinct base addresses: EDI, EDX*2, and EBX. In the dependence
graph, memory instructions having the same base address are represented with the same
symbol. Figure 2 (c) shows the values ofTotal LatenciesandCritical Latenciesfor
each base address pair.



B: mov [edx*2+411460h], eax

C: mov ebx, [edi]

D: add ebx, ebx

E: mov [ebx+411468h], ecx

A: mov edx, [edi]

(a) Trace (c) Base Addr Pairs(b) Dependence Graph
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(edx*2, ebx)                             4                                 0
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Fig. 2.Example of Target Memory Dependence Selection

The algorithm then selects for runtime disambiguation the pair of base addresses
that has the largest non-zeroCritical Latencies. Ties are broken usingTotal Latencies.
The pair of base addresses with the next largest non-zeroCritical Latenciesis also
selected. At this point, for most traces, there are no more base address pairs responsible
for latencies on the critical paths. For some very large traces, we allow a third pair to be
selected. Beyond three pairs, our experience is that the extra number of runtime checks
do not yield substantial performance gains. We refer to the selected base address pairs
ascritical base addresses. In the example shown in Figure 2, there is only one base
address pair (EDI, EDX*2) responsible for latencies on the critical path and therefore
it will be selected by the algorithm for runtime disambiguation.

Generating Inputs to Pointer Analysis Because the registers involved in a base ad-
dress may be redefined within a trace, we need to analyze the trace to determine whether
a single runtime check is sufficient to validate assumptions about multiple occurrences
of the base address. If not, priority is given to the earliest occurrences in the program or-
der because oftentimes removing one memory dependence gives pointer analysis more
accurate information about memory content and thereby helps unravel other memory
dependences (details are given in Section 4). The earlier a memory dependence is re-
moved, the more chances there are for it to help eliminate other dependences. For each
selected critical base address pair, the heuristic algorithm identifies the earliest pair of
memory instructions on the critical path with the corresponding base addresses. These
are the inputs to the pointer analysis, which automatically considers the specified mem-
ory instruction pairs to be independent.

As an optimization, if there is an even earlier pair, though not on the critical path, it
may be returned instead by the algorithm, but only if the registers involved in the address
expressions are not redefined between this pair and the earliest pair on the critical path.
This way we guarantee that the latter is always disambiguated, hence the critical path
shortened. In Figure 2, the earliest memory dependence corresponding to the selected
base address pair (EDI, EDX*2) is the edgeA → B, which is not on the critical path.

4 Light-Weight Pointer Analysis

Given the critical base address pairs returned by the heuristic algorithm, the goal of the
pointer analysis is to identify two kinds of memory dependences:



Directly covered dependencesMemory references whose base addresses (which syn-
tactically may or may not look the same as the critical base addresses) are guaran-
teed to evaluate to the same runtime value as the critical base addresses.

Indirectly covered dependencesMemory references that, though not accessing mem-
ory locations pointed to by the critical base addresses, may still be disambiguated
as a result of more accurate pointer information when some false memory depen-
dences have been removed.

The analysis achieves this by computing symbolically the set of possible values for
each register and each memory location touched within a trace. Amme et al. design a
intra-procedural data dependence analysis for assembly code by symbolic evaluation
[9]. However, their algorithm does not keep track of memory contents and therefore
loses crucial information and accuracy.

The key to the success of our analysis is not just to prove non-aliases, but to infer
must-aliases such that information about the content of a memory location can be prop-
agated from one memory reference to another. The fact that the traces are single-entry
greatly increases the rate at which must-aliases can be proven since every use has ex-
actly one reaching definition for both registers and memory locations. In addition, this
control-flow property also keeps the analysis extremely light-weight because the size of
any symbolic value set is always exactly 1 due to the absence of merge points.

Notice that this analysis only needs to be performed on traces for which the heuris-
tic algorithm returns at least some memory dependences to recommend for runtime
disambiguation. Also notice that we could have used this more sophisticated analysis
in place of instruction inspection in the preliminary dependence selection phase to filter
out more non-aliases. However, without some dependences assumed to be removed by
runtime checks, the analysis is too constrained by inaccurate information about memory
contents to offer significant benefit over instruction inspection. On top of that, the anal-
ysis will have to be run on all traces. Therefore we use instruction inspection instead,
which is simpler and cheaper.

The remainder of this section first walks through a small example to show how the
analysis works and then gives the formal definition of the analysis.

4.1 Walking through an Example

In the trace shown in Figure 2, there are five pairs of ambiguous memory references:
A → B, A → E, B → C, B → E, andC → E. We show that all of them can be
removed by inserting one runtime check.

The pointer analysis receives from the memory dependence selection algorithm the
input instruction pair(A,B), which can be assumed to be independent since a runtime
check will be inserted to compare the values of EDI and EDX*2. The same check also
directly removes the dependence betweenB andC because EDI remains unchanged
betweenA andC. Although syntactically the address referenced by instructionE has
nothing to do with EDI or EDX, interestingly the remaining three dependences involv-
ing it can still be eliminated in the presence of the check. SinceA andB do not alias, we
know that the content of the location pointed to by EDI is not overwritten byB, there-
fore the values loaded byA andC must be the same, that is, EBX== EDX right after



//r1 = base1 + index1 * scale1 + offset1
//r2 = base2 + index2 * scale2 + offset2
//result = base + index * scale + offset

base := r1
index := r2
scale := a
offset := b

if (base2 == NULL && index2 == NULL)
index := NULL
offset += offset2 * a

else if (index2 == NULL)
index := base2
offset += offset2 * a

else if (base2 == NULL)
index := index2
scale *= scale2
offset += offset2 * a

if (index1 == index || index1 == NULL || index == NULL)
base := base1
scale += scale1
offset += offset1

if (base == index)
base := NULL
scale++

Fig. 3.Pseudo-code for Computingr1 + r2 ∗ a + b

C. After symbolically executing instructionD, EBX == EDX*2, hence the symbolic
address referenced byE is EDX*2 + 411468h with EDX*2 as base. This means that
B andE definitely do not alias since they access the same base address with different
offsets. The dependence betweenA → E andC → E are removed because their base
addresses can be compared by the runtime check.

4.2 Symbolic Pointer Values

We use the same expression,base reg + index reg ∗ scale + offset, to represent all
symbolic values, pointers or non-pointers. Each register value in the expression is a pair
(reg name,def site), wheredef site is the id of the instruction that writes the value
into the register. Eitherbase reg or index reg can be omitted (we say that their value is
NULL). The rule for arithmetics on the symbolic values is described by the pseudo-code
in Figure 3, which computesr1 + r2 ∗ a + b wherer1 andr2 are themselves symbolic
expressions. It merges the two symbolic expressions if it can, otherwise it gives up and
returnsr1 + r2 ∗ a + b.

4.3 Analysis Algorithm

The algorithm finishes in one pass over the instructions in the trace starting from the
entry. At each memory instruction, it compares the symbolic address with those of all
previous memory instructions to see whether aliases exist. Therefore the worst case
complexity of the algorithm is quadratic in the number of instructions.



//Instruction t is a memory reference
addr_t := Inst_Addrs(t)

for each memory instruction s before t
addr_s := Inst_Adds(s)
if (may_alias(addr_s, addr_t))

record dependence s->t
if (is_store(t))

Mem_Values(addr_s) := NULL

if (is_load(t))
r := dest_reg(t)
content_t := Mem_Values(addr_t)
if (content_t != NULL)

Reg_Values(r) := content_t
else

Reg_Values(r) := (r, t)
Mem_Values(addr_t) := Reg_Values(r)

Fig. 4.Pseudo-code for Analyzing Memory Instructions

The algorithm maintains the following data structures.

1. RegValues– Maps each register to a symbolic expression describing the current
value held in that register.

2. Mem Values– Maps each symbolic memory address to a symbolic expression de-
scribing the current value stored at that address. If the analysis cannot infer any
information about the content of that memory location, it will map the symbolic
address to the value NULL.

3. Inst Addrs– Maps each memory instruction to the symbolic address it references.

Figure 4 contains the pseudo-code for actions taken at memory instructions. At
other instructions, the analysis simply does symbolic evaluation based on the semantics
of the instruction.

The symbolic address of each memory instruction is compared with those of all
memory instructions that come before it in the trace. Non-alias is determined if the base
address parts of the two symbolic addresses are the same and the offsets are different.
Must-alias is determined if both the base addresses and the offsets are the same. If the
memory instruction is a store, the analysis removes the contents of all aliasing sym-
bolic addresses recorded in the tableMem Valuesand changes them to NULL. This is
because the store might write to any of these aliasing locations, destroying the values
held in there. If the memory instruction is a load, the analysis looks up the symbolic
address up inMem Values. If it is mapped to a non-NULL value, this means that there
is a previous must-alias instruction for which the analysis has recorded what value is
in the memory location right after the instruction and this information has not been
destroyed by any subsequent aliasing store. In this case, the destination register of the
load can assume the value recorded inMem Values. Otherwise, the analysis can say
nothing about the value loaded into the destination register, either because the value has
been destroyed by aliasing stores or because the value is a live-in through memory. In
this case, the analysis simply records inMem Values that the content of the memory
location is whatever value that is currently in the destination register.



5 Inserting Runtime Checks

Runtime checks are inserted in the trace and scheduled together with other instructions.
Instructions that do not depend on the checks can be scheduled past them, no compen-
sation code is needed on the off-trace path. Instructions dependent on the checks but
with no side-effects, i.e. loads and their uses, can also be scheduled past the checks. We
rely on the trace scheduling algorithm [10] to insert proper compensation code at the
split points.

5.1 Determining Test Conditions

Each memory reference is characterized by an address and a reference size, which to-
gether specify a range of memory addresses[address, address+size). A runtime check
needs to test for the disjoint-ness of two memory ranges. Letrange1 = [a, b) and
range2 = [c, d), eitherrange1 is belowrange2, which is captured by the condition
b <= c, or range1 is aboverange2, which is captured by the conditiond <= a.
For each pair of critical base addresses(basea,baseb), we separate the memory de-
pendences directly covered by it into two groups to differentiate between these two
situations. It turns out that just like the aliasing behavior, the relative positions of any
two memory references are also highly stable throughout the lifetime of the program.
This is not surprising as the two memory references may access different data structures
whose locations in memory are fixed. As such, profiling can provide good guidance on
deciding which group a memory dependence should go to. Indeed, we use the actual
addresses recorded in the initial alias profiling phase for this purpose. Leta → b be
a dependence directly covered by(basea,baseb) and suppose that instructiona’s base
address isbasea and instructionb’s base address isbaseb. If the actual address range of
a is below the actual address range ofb according to the profile, then we puta → b in
group I, otherwise we put it in group II.

Two checks are then generated, one for each group. Within each group, the check
needs to be able to accommodate all the different offsets from a single base address.
To do this, we introduce the concept of anextended range, which contains all ranges
relevant to a base address within either group. Suppose that there aren dependences
in group I (or group II) and that then instructions withbase a as base address are
described by the (symbolicaddress, size) pairs(basea+offset1, size1), ..., and(basea+
offsetn, sizen). Then the extended range corresponding tobasea in this group is
[basea + min(offset1, ..., offsetn),basea + max(offset1 + size1, ..., offsetn + sizen)).
The extended range forbase b can be computed in the same fashion.

For example, in Figure 5, there are three memory dependences covered by same crit-
ical base address pair: no base address (instructionA, B, andD) andedx (instruction
C). All memory references have a size of 4 bytes. The dependencesA → C andB → C
belong to group I as the effective address range ofA andB are below that ofC, and the
dependenceC → D belongs to group II. The extended range covering bothA andB is
[301280h, 411464h+4) and the extended range coveringC is [edx +8, edx +8+4).
Therefore the test condition we generate for group I is411464h + 4 <= edx + 8.
Similarly the test condition for group II isedx + 8 + 4 <= 62013Ch.



A: 411464h

B: 301280h

C: edx + 8  (profiled addr: 560890h)

D: 62013Ch

Fig. 5.Determining Test Conditions

6 Evaluation

6.1 Experimental Framework

We implemented selective runtime disambiguation algorithm in the Star Dynamic Bi-
nary Translator (StarDBT), a DBT framework currently being developed inside Intel for
32-bit x86. We evaluated our technique on an in-order VLIW simulator with stall-on-
load semantics. The simulator models a 6-issue processor with 2 memory read ports, 2
memory write ports, 4 integer units, 1 floating point unit, and 1 branch unit. The config-
uration of the memory hierarchy is given in Table 1. The memory behavior of StarDBT
itself is not simulated since the execution time spent in StarDBT code is a small fraction
of the execution time of the entire program. Execution time is computed by summing of
the static cycle counts generated from the instruction schedules and the miss penalties
reported by a cache simulator.

Level Write Policy Allocation Policy Floating Point BypassAssociativity Size Latency

L1 Write throughRead-only alloc Yes 4-way 16KB 1 cycle hit
L2 Write back Write alloc No 8-way 128KB 3 cycle hit
L3 Write back Write alloc No 12-way 3MB 10 cycle hit / 100 cycles miss

Table 1.Memory Hierarchy

The simulation is done online while StarDBT is translating and executing the pro-
gram. StarDBT inserts instrumentation before each memory instruction to record the
actual addresses in a data structure. Whenever the data structure is filled up, StarDBT
jumps out of the execution of the program and transfers control to the cache simula-
tor, which then simulates the memory accesses in the order specified by the instruction
schedules. Figure 6 contains the flow chart of the simulation process within StarDBT.
After a trace is formed, the first schedule is computed based on dependence information
generated from instruction inspection. Next, alias profiling is conducted, during which
period the memory accesses of the trace are simulated based on the first schedule. At
the end of alias profiling, our heuristic algorithm and light-weight pointer analysis are
performed and a second schedule is generated if any runtime check is to be inserted.
From that point on till the end of the program execution, memory accesses are simulated
using the second schedule. The benchmarks we used is the SPECINT2000 benchmarks
with ref input.

6.2 Precision Evaluation

Precision in this context is how finely our technique controls where to apply selective
disambiguation and where to spend analysis effort. We also look at the misspeculation



Alias Profiling schedule I
Simulate using

Simulate using schedule II

Trace selection

Selective runtime disambiguation Schedule II

Instruction inspection Schedule I

Fig. 6.Flow Chart of Simulation in StarDBT

Benchmark #Traces#Selected Traces#Optimized Traces#ChecksMisspeculation

164.gzip 1558 364 362 636 - %
175.vpr 1220 366 349 552 0.01%
176.gcc 14924 2251 2164 3124 - %
181.mcf 174 50 50 76 0.01%
186.crafty 1431 175 173 263 1.51%
197.parser 2566 376 347 645 1.55%
252.eon 739 215 211 390 5.75%
253.perlbmk 9299 3093 2913 5217 0.36%
254.gap 1691 287 281 444 0.38%
255.vortex 3956 1734 1713 3990 - %
256.bzip2 963 247 241 359 0.85%
300.twolf 931 311 302 548 0.48%

Table 2.Precision Evaluation

rate of the runtime checks to see whether the test conditions accurately capture the
frequent cases.

In Table 2, the column “#Selected Traces” refers to traces for which the heuris-
tic algorithm reports beneficial critical dependences, the column “#Optimized Traces”
refers to traces that, with runtime checks inserted, indeed have schedules shorter than
their original schedules. There are two interesting points. First, on average the selected
traces are only 26% of the total traces. The rest simply do not have memory depen-
dences on the critical path. This could happen if the memory dependence is not the only
type of dependence between two instructions and there exists a chain of other depen-
dences whose total latency is larger than the latency of the memory dependence. From
this point, the heuristic algorithm is precise in that no check is ever inserted where
it cannot possibly improve scheduling. Second, out of the selected traces, almost all
(97%) have improved schedules with runtime checks inserted. The reason why some
traces may fail to have shorter schedules is that not enough dependences are removed
by the runtime checks. For example, there may be two critical paths of equal lengths
in the original dependence graph and the checks can only remove dependences on one
path, or too few dependences are removed to make up for the overhead of the runtime



checks themselves. From this point, the heuristic algorithm is also precise because the
critical base addresses it selects are such that the runtime checks for these addresses
almost always cover enough dependences to yield actual performance gains, hence no
work subsequently done in the pointer analysis and rescheduling is wasted.

For the traces that do have improved schedules, we go ahead and insert the runtime
checks and recovery code. On average, only about 1.7 checks are inserted per optimized
trace. If averaged over all traces that make up the program, about 0.4 checks are inserted
per trace. Assuming pessimistically that with each check inserted the entire trace has
to be duplicated, this translates to a rough estimation of a 40% code growth over the
original translated binary. In reality, however, the code growth should be much smaller
because checks are often inserted not at the entry of the trace but in the middle, therefore
only the tail of the trace needs to be duplicated.

Misspeculation happens when a runtime check fails either because the initial alias
profiling did not accurately predict the aliasing behavior of the whole program or be-
cause the test conditions fail to characterize all cases of disjoint-ness in their attempt to
cover multiple displacements from base addresses. The misspeculation rate is measured
in StarDBT by prolonging the initial alias profiling phase to span the entire execution
of the program and evaluating the test conditions on the effective addresses collected
by profiling. The last column in Table 2 gives the misspeculation rate as the percentage
of the number of misspeculations over the total number of runtime checks performed
dynamically.

6.3 Impact on Scheduling

To evaluate the impact of removed memory dependences on the quality of the instruc-
tion schedules, we compare the schedules generated with no disambiguation at all, with
instruction inspection, and with our technique respectively to the optimal schedules,
where all false memory dependences are removed. The quality of the schedules is mea-
sured as slowdown from the optimal schedules in static cycle counts. As we can see
from Table 7, without any memory disambiguation, the schedules generated assuming
all memory references alias are really bad, with a geometric mean slowdown of 24.5%.
With instruction inspection, the slowdown is reduced to 7.7%. And finally, our tech-
nique can almost close the gap and match the optimal scheduling (1.3% slowdown) just
by inserting a small number of runtime checks.

6.4 Speedup from Improved Scheduling

We compare the actual performance gains, obtained respectively from instruction in-
spection only and from our technique, over baseline where no memory disambiguation
is performed at all. The same online cache simulation mechanism is used to compute
the execution time of baseline and instruction inspection. As shown in Table 3, our
technique can disambiguate more than twice as many dependences as does instruction
inspection, which amounts to 73% of all false memory dependences. This translates
to a 5% increase in performance gains over baseline as the result of improved instruc-
tion scheduling alone. If combined with other optimizations such as redundant memory
operation elimination and register promotion, we expect even bigger improvement.
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Fig. 7.Comparing with Optimal Scheduling

Benchmark Instruction Inspection Selection Disambiguation
Deps RemovedSpeedupDeps RemovedSpeedup

164.gzip 42% 7.7% 78% 10.3%
175.vpr 30% 16.9% 80% 23.3%
176.gcc 35% 16.8% 69% 21.9%
181.mcf 34% 5.6% 79% 9.9%
186.crafty 31% 14.2% 47% 18.9%
197.parser 40% 12.4% 80% 15.5%
252.eon 34% 33.3% 69% 42.0%
253.perlbmk 32% 15.8% 76% 20.0%
254.gap 17% 6.9% 57% 16.6%
255.vortex 34% 10.4% 87% 14.2%
256.bzip2 47% 13.2% 75% 17.2%
300.twolf 40% 16.9% 84% 23.5%

Average 35% 14.2% 73% 19.3%

Table 3.Performance Gains over Baseline

6.5 Analysis Overhead

We measured the time spent in our analysis, which corresponds to the shaded boxes in
Figure 6. It is a function of the number of traces and the size of the traces on which the
light-weight pointer analysis and rescheduling are performed. Table 4 shows the anal-
ysis time together with the execution time of the benchmarks in StarDBT without our
technique on a 3.2GHz Xeon with 2.5MB of cache and 2G of memory.1 The analysis
overhead is extremely low compared to the program execution time, so the performance
gained through our technique will not be offset by the overhead of the technique itself.

7 Conclusion and Future Work

In this paper, we present a technique designed to provide sophisticated memory disam-
biguation in a dynamic binary translator at low cost. It precisely selects memory depen-
dences whose removal by runtime disambiguation can result in shortened schedules.
Simple analysis is applied to allow as many dependences to be removed by one runtime

1 StarDBT does not yet run on in-order machines that we want to evaluate our technique on,
hence the speedup through our technique could not be measured in the same way.



Benchmark Execution Time (sec)Analysis Time (sec)

164.gzip 125 0
175.vpr 129 1
176.gcc 122 3
181.mcf 104 0
186.crafty 112 0
197.parser 144 1
252.eon 92 5
253.perlbmk 166 5
254.gap 70 1
255.vortex 105 9
256.bzip2 129 0
300.twolf 191 1

Table 4.Analysis Time

check as possible. We also use profile guidance to trim the actual test conditions of the
runtime checks. Our experiments demonstrate that selective runtime memory disam-
biguation almost doubles the number of memory dependences removed by instruction
inspection and improves the overall performance by 5% just from scheduling. In the
future, we will investigate other optimizations such as redundant memory operation
elimination and register promotion, which can make use of the disambiguation offered
by our technique for further improvements.
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