
passert:

A Tool for Debugging Parallel Programs

Daniel Schwartz-Narbonne�, Feng Liu, David August, and Sharad Malik�

Princeton University
{dstwo,fengliu,august,sharad}@princeton.edu

Abstract. passert is a new debugging tool for parallel programs which
allows programmers to express correctness criteria using a simple, expres-
sive assertion language. We demonstrate how these parallel assertions
allow the detection and diagnosis of real world concurrency bugs, de-
tecting 14/17 bugs in an independently selected set of bugs from open
source software. We describe a runtime checker which allows automatic
checking of parallel assertions in C and C++ programs, with a geometric
mean of 6.6× overhead on a set of PARSEC benchmarks. We improve
performance by introducing a relaxed timing semantics for parallel asser-
tions, which better reflects real memory models, and exposes more bugs
with less overhead (geometric mean overhead 3.5×).

1 Introduction

passert is a new debugging tool for parallel programs which allows programmers
to express correctness criteria using a simple, expressive assertion language. If a
correctness property is violated during program execution, an automatic runtime
checker will detect the violation.

Such a tool is necessary because the standard assertions that are widely used
for debugging sequential programs are highly limited for parallel programming.
In a sequential program, it is sufficient to check whether a property holds at a
particular point in time. In a parallel program it is possible for a property to be
true when a section of code begins executing, for the code in question to make no
changes that could falsify the property, and yet for the property to be violated
by the actions of a second thread. Checking whether a property holds during
execution through a small code segment potentially requires annotating every
statement of the program with assertions. Even this might not be sufficient: since
assertions are not synchronized with code execution, checking an assertion that
depends on more than one program variable might be impossible to do correctly
without significant code modification.

Parallel assertions, the input language of passert, solve this problem by pro-
viding a simple, understandable set of predicates that allow programmers to
write local assertions which allow testing of multithreaded programs.

� The authors acknowledge the support of the Gigascale Systems Research Center
(GSRC), one of six research centers funded under the Focus Center Research Pro-
gram (FCRP), a Semiconductor Research Corporation (SRC) entity.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 751–757, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



752 D. Schwartz-Narbonne et al.

2 The Parallel Assertion Language

2.1 Syntax

A programmer debugging a piece of code wants to know whether a property holds
during the execution of a piece of code. A parallel assertion therefore consists of
two parts: a description of the times when the assertion is expected to be true,
which we call the assertion scope, and the property which is expected to hold,
which we call the assertion condition. Parallel assertions are expressed using
simple, easy to use predicates. More powerful formulations, such as temporal
logic, are possible but are unfamiliar to programmers and provide expressiveness
at the cost of complexity.

Parallel assertions are applicable to many programming languages. This paper
focuses on our C/C++ implementation; a full formal syntax and semantics is
provided in [3].

Assertion Scope. The assertion scope is a block of code which delineates the
time during which the assertion condition must hold. It begins with the keyword
thru and ends with passert(cond).
thru {

... ;

} passert (cond)

Assertion Condition. The assertion condition is a side-effect free Boolean
expression, which can contain Boolean combinations of any of the following sub-
expressions:

Type Description Example

Value Any side effect free boolean expression x > 5

LocalRead(x) True when the asserting thread is reading the variable x LR(x)

LocalWrite(x) True when the asserting thread is writing the variable x LW(x)

RemoteRead(x)
True when a thread other than the asserting thread is
reading the variable x

RR(x)

RemoteWrite(x)
True when a thread other than the asserting thread is
writing the variable x

RW(x)

HasOccurred(expr)
True iff expr has ever been true while the assertion was
active

HO(expr)

2.2 Assertion Semantics

The result of a parallel assertion is defined relative to a program execution i.e.
an observed interleaving of read and write events by the executing threads. We
augment this program execution by adding assertion begin and assertion end
events, which mark the beginning and end of assertion scopes. A timeline is an
observed total ordering of these events for a particular execution of a parallel
program. (Under certain circumstances, discussed in Sec. 6.2, this requirement
for a total ordering can be relaxed).



passert: A Tool for Debugging Parallel Programs 753

An assertion holds, for a particular timeline, if the assertion condition is true
for all times between the beginning and end assertion events. It fails if there is
any time between the begin and end events during which the assertion condition
is not true. Since assertions are checked, not enforced, they can be used for
debugging and then turned off for production.

3 Applicability of Parallel Assertions to Real World Bugs

Assertions have two purposes: to detect unexpected events that may represent
bugs, and to test hypotheses to diagnose the cause of these bugs. We evaluated
the effectiveness of parallel assertions using the University of Michigan Collection
of Concurrency Bugs [4]1, an independently selected collection of real world
concurrency bugs from major open source programs. For each bug, we attempted
to write a parallel assertion to detect its symptoms and diagnose its underlying
cause, without requiring any other code modifications.

Bug Analysis Example MySQL-3.23.56 had a concurrency bug which caused it to
produce a nonsensical log: for example, it could report a successful insert before
the associated table had been created. We identified several possible explanations
for this bug, and wrote a parallel assertion to test each of these.

– Assertion 1 checked for a data-race problem and confirmed that all accesses
to the log are protected by a lock.

– Assertion 2 determined that inserts never occurred while the table was in-
valid.

– Assertion 3 tested whether the log order represents the actual order of events,
i.e. does an operation (such as creating a table), and the logging of that
operation, form a single atomic unit. This seemingly simple test requires the
expressiveness of parallel assertions. It would be incorrect to mark the entire
generate table() function as atomic, because it correctly accesses shared
variables in a non-transactional way. In addition, while conflicting writes to
the logger represent an error, reads may not. This assertion captures these
subtleties, and successfully diagnosed the cause of the error.

These assertions could subsequently be left in the program as regression tests.
int generate_table(...) {
...

thru{
pthread_mutex_lock(&LOCK_open);

// delete the original table

// create a new table

pthread_mutex_unlock(&LOCK_open);

mysql_update_log.write(...);

}passert(!RW(mysql_update_log));
...

}

bool MYSQL_LOG::write(...) {
...

pthread_mutex_lock(&LOCK_log);

// log event

pthread_mutex_unlock(&LOCK_log);

...

}

(Parallel assertion to identify MySql bug 169)

1 Currently maintained at http://www.eecs.umich.edu/~jieyu/bugs.html

http://www.eecs.umich.edu/~jieyu/bugs.html


754 D. Schwartz-Narbonne et al.

Summary of Bug Coverage Almost all (14/17) of the bugs in the University of
Michigan Collection can be detected using parallel assertions (shown in the table
below). Of these, thirteen can also be diagnosed using parallel assertions; one
is a multi-function atomicity violation, which would be difficult to capture in a
single syntactic scope. passert is not designed to detect deadlock and complex
order-violation bugs.

Bug ID Bug Type
Detect

Symptom
Diagnose
Cause

Apache #25520, 21287
MySQL #44, 791, 2011, 3596, 12848
Cherokee Bug1, Aget Bug2

Data Race Yes Yes

Apache #45605
MySQL #169, 12228
Memcached #127

Atomicity Yes Yes

Apache #21285 Atomicity Yes No
Pbzip2 0.9.4, Transmission 1.42 Order Violation No No
Aget Bug1 Deadlock No No

4 Tool Design

passert is a compiler that automatically adds runtime support for parallel as-
sertions in C/C++ programs. It is implemented as an extension to the LLVM
[2] compiler suite, and supports the same programs and language features as
the standard LLVM compiler. At present, passert targets programs using the
pthreads threading library; we expect that it will be easy to extend it to other
threading models, such as Windows threads.

We reduced the impact of assertion evaluation on program execution by de-
coupling execution and checking: as the program executes, relevant loads/stores
are timestamped and logged for subsequent checking.

Logging. To reduce logging overhead, we use alias analysis to determine whether
a load or store may access a variable in a parallel assertion condition. Since static
alias analysis is overly conservative, passert also maintains a hash-table which
records whether accesses to a given memory location need to be logged. Colli-
sions in the hash-table may cause unnecessary logging, but will never cause an
event to be missed from the log.

Checking. Checking can either be done online, using a separate checking thread
and synchronized queues, or offline, in which case no synchronization needs to
be done on the queues. Performance results are discussed in Sec. 7.

Avoiding Stalls. An event can only be processed if all events which occur
before it in the execution trace have already been processed. If a thread stops



passert: A Tool for Debugging Parallel Programs 755

generating events, it becomes impossible to determine the correct sequence of
events, since the checker has no way of distinguishing between “no event” and “a
not-yet-logged event”. The checker must therefore conservatively wait until the
thread resumes generating events. If a thread which is about to stall can gener-
ate a Thread Stalled event, the checker can continue without waiting. passert
automatically generates such events before calls to blocking functions such as
pthread_join(), pthread_barrier_wait() and pthread_cond_wait(). Pro-
grammers writing specialized synchronization libraries can add their own event
annotations. They can also insert Heartbeat Events into code which is unlikely
to generate any logged events, such as calculations on privatized data. As a fu-
ture extension, we hope to introduce heuristics that will automatically add these
events at appropriate points.

5 Response to Assertion Failure

When an assertion fails, passert informs the user and prints out a set of diag-
nostic information. This information includes which memory access caused the
assertion failure (including time, thread id, value, and type of access), as well
as which assertion was triggered. If the user desires, passert can output its full
log to a file. If the program has been compiled with debug symbols, it is possible
to associate the log information with program locations, although this is not
currently implemented. A compiler flag controls whether the executable should
abort or continue after an assertion violation.

In addition, passert provides a feedback function which allows user code to
block until the checker has evaluated all events before the feedback function
call began, and then returns the checker status (i.e. failure or success). The
program can use this mechanism to ensure that a dangerous action only occurs
after correct execution, or to rollback and recover after an assertion failure. As
a convenience, passert can automatically insert a checker feedback call at the
end of each thru block.

6 Timing modes

The semantics of parallel assertions, as introduced in [3], requires a total order-
ing of events during a concurrent execution. However, modern microprocessors
typically have more relaxed semantics, which allow for event sequences which do
not have any consistent total order.

6.1 Strict Timing

In strict timing mode, this total ordering is enforced through the use of locks and
fences around every logged memory access. Timestamps can be acquired either
through a global counter, or through a hardware timestamping mechanism such
as RDTSC [1].



756 D. Schwartz-Narbonne et al.

6.2 Relaxed Timing

Not all parallel assertions require a total order over program events in order to
be correctly evaluated. In some cases, a partial order among certain types of
events is sufficient. In particular, any assertion which either:

– Only contains access predicates (such as RemoteWrite(x)), or

– Contains value predicates, but only references a single variable

requires a partial order between access and assertion begin/end events, but does
not require any further ordering among access events.

Relaxed Timing Mode enforces only these minimal constraints, dramatically
reducing the number of locks and memory fences required. This both reduces
runtime overhead (see Sec. 7), and allows a wider range of bugs to manifest,
since locks prevent certain combinations and orderings of events that would be
legal and possible in the underlying hardware model.

7 Results

We evaluated the runtime performance of passert using the assertion-annotated
PARSEC benchmarks described in [3]. All benchmarks were compiled at opti-
mization level O3, and were executed on a quad core Intel X3440 with 16GB of
RAM. The runtime for each benchmark, normalized to the unmodified bench-
mark compiled using standard gcc, is reported in Fig. 1.

The online checker performs checking in parallel with execution, which speeds
up the checking phase, but requires extra synchronization in the logging phase.
Currently, these two effects roughly cancel each other out; we hope to remove
this overhead with further optimization. Strict timing had a geometric mean
overhead of 6.6×. Relaxed timing was significantly faster, with a geometric mean
overhead of 3.5×.

Fig. 1. Runtime overhead for parsec benchmarks



passert: A Tool for Debugging Parallel Programs 757

8 Conclusion

passert provides programmers with a new tool to identify elusive bugs in par-
allel programs. Until now, parallel programs have been challenging to debug,
because it has been hard to express and check assumptions about program ex-
ecution across multiple threads. Our experience with the Michigan Bug Collec-
tion shows that parallel assertions are sufficiently expressive to capture a range
of real-world bugs. Our performance experiments indicate that checking these
assertions can be done with reasonable overhead. The simple, expressive syn-
tax of passert allows programmers to express correctness conditions to debug
programs with a high degree of efficacy and a minimum of effort.

References

1. Intel Corporation. Intel 64 and IA-32 Architectures Developer’s Manual (2010)
2. Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,

Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL
(2002)

3. Schwartz-Narbonne, D., Liu, F., Pondicherry, T., August, D., Malik, S.: Parallel
assertions for debugging parallel programs. In: MEMOCODE 2011, pp. 181–190
(2011)

4. Yu, J., Narayanasamy, S.: A case for an interleaving constrained shared-memory
multi-processor. In: ISCA 2009, pp. 325–336 (2009)


	passert: A Tool for Debugging Parallel Programs
	Introduction
	The Parallel Assertion Language
	Syntax
	Assertion Semantics

	Applicability of Parallel Assertions to Real World Bugs
	Tool Design
	Response to Assertion Failure
	Timing modes
	Strict Timing
	Relaxed Timing

	Results
	Conclusion
	References




