
From Sequential Programming to
Flexible Parallel Execution

Arun Raman
Intel Labs

Santa Clara, USA
arun.a.raman@intel.com

Jae W. Lee
Sungkyunkwan University

Suwon, Korea
jaewlee@skku.edu

David I. August
Princeton University

Princeton, USA
august@princeton.edu

ABSTRACT
The embedded computing landscape is being transformed
by three trends: growing demand for greater functionality
and enriched user experience, increasing diversity and paral-
lelism in the processing substrate, and an accelerating push
for ever-greater energy efficiency. For programmers, these
trends give rise to three challenges: writing code for a po-
tentially heterogeneous architecture, extracting parallelism
in software, and maximizing a multivariate (performance,
power, energy, etc.) fitness function of user satisfaction
which may vary with time. To meet these challenges, clarion
calls have been issued for programmers to start writing soft-
ware in new parallel programming models. Fundamentally,
however, these proposals detract programmers from deliver-
ing new features and enriched user experience in the shortest
time possible. This paper proposes to attract embedded sys-
tems programmers to a vertically integrated approach, com-
prising extensions to the sequential programming model, a
parallelizing compiler, and an optimizing run-time system,
to enable them to tackle all three challenges.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Run-time environments

General Terms
Design, Performance

Keywords
adaptivity, code generation, compiler, embedded, flexible,
GPGPU, heterogeneous, multicore, optimization, parallel,
parallelization, performance portability, run-time, tuning

1. INTRODUCTION
In mainstream computing, a heterogeneous multicore ar-

chitecture comprising a mixture of multiple, different, types

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’12, October 7–12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1424-4/12/09 ...$15.00.

of computational elements is becoming the predominant pro-
cessor design. Heterogeneity is de rigueur in embedded sys-
tems, but there is also a definite push towards consolidating
multicore CPUs, multicore GPUs, and various accelerators
onto a single chip. The primary obstacle to effective use
of these ostensibly powerful computational substrates is the
difficulty in programming them. Two predominant schools
of thought exist to overcome this obstacle.

The first school exhorts programmers to write code using
new parallel programming models or libraries [1, 5, 6, 11].
These, however, burden the programmer with the need to
reason about complex thread interleavings and concurrency
control mechanisms, or serialize execution between different
computational elements. Often, these models force the pro-
grammer to specify a fixed parallelization strategy (e.g. data
parallel, pipeline parallel), fixed split of functionality across
heterogeneous computational elements (e.g. a CPU program
with GPU “kernels”), and fixed concurrency control strategy
(e.g. locking, transactions) [7]. This early binding of func-
tion to form breaks the abstraction between software and
hardware, resulting in suboptimal performance when work-
load or resource availability changes [3, 9].

The second school promises to unburden the programmer
of the onerous task of (re-)writing parallel programs, by hav-
ing the compiler automatically extract parallelism from the
program [4, 10]. However, in practice, the widespread use
of sequential programming to implement algorithmic speci-
fications imposes severe constraints on the compiler’s ability
to extract scalable parallelism. As with manual parallel pro-
gramming, most compilers perform early binding, leading to
suboptimal parallel execution in a variety of scenarios [9].

To overcome challenges evident in both approaches, this
paper argues for a three-pronged approach consisting of:

• Extensions to the sequential programming model, which
relax the constraints on instruction ordering by en-
abling programmers to specify commutativity relation-
ships between sets of instructions and weaker data con-
sistency requirements. By using these extensions, the
programmer does not specify parallelism, but rather
enables automatic parallelization. Additionally, the
programmer embeds hints in code blocks indicating
the natural affinity of that code block to a computa-
tional unit (to a particular accelerator, for example).
However, the system may choose to ignore the hints.

• A parallelizing compiler, which uses the relaxations
and hints specified by the programmer to extract mul-
tiple types of parallelism from the sequential program,

generate multiple code versions to target a heteroge-
neous architecture, and encode the program configu-
ration space induced by parallelization and code ver-
sioning in a small set of tunable parameters. Programs
created thus are called flexible parallel programs.

• An optimizing run-time system, which monitors pro-
gram performance and system events, such as launches
of new programs and resource availability change, and
determines the best configurations (settings of the tun-
able parameters exposed by the compiler, and the dy-
namic mapping of code to computational element) of
all concurrently executing flexible parallel programs.
The optimization objective is specified by the user,
may vary with time, and may be composed of latency
and throughput requirements with constraints on power,
memory, energy, temperature, etc.

The remainder of this paper describes synergistic advances
in the above three areas, which together may restore the em-
bedded system developer’s focus to delivering exciting new
features and applications.

2. PROPOSED APPROACH
Figure 1 shows the proposed programming model and exe-

cution architecture. Note the strong separation of concerns;
offloading parallelism extraction and tuning away from the
programmer to an automatic system reduces time to market
of new systems and features.

2.1 Relaxed Sequential Programming
For many applications, there is no single required order

of execution or even a single correct output. Semantically,
a multitude of execution orders and outputs may be equally
correct. However, a side effect of expressing the algorithm
in a sequential programming model is the implicit declara-
tion of an arbitrary single order and single output as correct.
Consider the code in Figure 2. The dependency on the seed

variable across invocations of random prevents a compiler
from scheduling iterations of the loop in main to execute
concurrently and without synchronization1. However, if the
programmer marks the function as Commutative, indicat-
ing that invocations of random may happen atomically in
any order, then the compiler is free to apply DOANY par-
allelization [13], which schedules iterations for concurrent
execution and ensures consistency of seed state by mak-
ing calls to random atomic. Recent work demonstrates how
scalable parallelism of different types can be obtained via a
generalized commutativity framework [7].

Some data structures offer sequential semantics to pro-
grams that may work correctly even with relaxed semantics.
For example, in many iterative convergence algorithms, ig-
noring flow dependencies and allowing reads of stale values
(earlier versions of a memory location) unlocks parallelism
by enabling iterations of a loop to execute in parallel [12].
Respecting the dependencies improves algorithmic conver-
gence time, but breaking the dependencies unlocks paral-
lelism which in several cases compensates the former.

1Sophisticated parallelization algorithms can extract some
forms of parallelism from the loop [10].

Sequential Code
with Hints

PDG Builder
Alias Analyses

PS-DSWP

Relax
Dependencies

Report Inhibiting
Dependencies

PDG

C
om

pi
le

r
Pr

og
ra

m
m

er

R
un

-ti
m

e

Parallelizers

Flexible parallel code

Optimizer Monitor

Executor

DOALL DOANY …

H
ar

dw
ar

e
Heterogeneous

multicore processsor

Flexible Execution
API

Flexible Code Generators

CPU FPGA GPU

Figure 1: Programming and Execution Architecture

2.2 Parallelizing Compiler
The compiler identifies parallelizable regions in a sequen-

tial program and applies multiple parallelizing transforms to
each region, generating multiple versions of flexible parallel
code. The generated flexible code can be paused during its
sequential or parallel execution, reconfigured, and efficiently
resumed by the run-time task executor. The compiler also
inserts profiling hooks into the generated code for the run-
time monitor to observe program behavior.

Referring to Figure 1, the compiler discovers parallelism
by building a Program Dependence Graph (PDG) of the
hottest outermost loop nest. The compiler processes the
programmer-specified order and data consistency relaxations
to remove some dependencies (while inserting appropriate
synchronization where necessary). The compiler then ap-
plies multiple parallelizing transforms, such as DOALL [2],
DOANY [13], and PS-DSWP [10], to the PDG of a loop nest.
The framework can accommodate additional, new trans-
forms. Each transform extracts a distinct form of thread-
level parallelism—data parallelism, pipeline parallelism, and
task parallelism—encapsulated in code packages called tasks.
The original, sequential version of the loop is also maintained
as a task. Dynamic instances of a task may either execute
sequentially or in parallel, depending on the task’s depen-
dency pattern. Note that parallel execution may involve
communication or synchronization.

Flexible parallel execution entails dynamic scheduling of
task instances across different types of cores, execution of
parallel tasks by a dynamically varying number of cores,
and pausing a set of tasks followed by resumption of a pos-
sibly different set of functionally equivalent tasks. To facili-

1 @Commutative
2 int random() {
3 int temp = seed / 127773L;
4 seed = 16807L ∗ (seed − temp ∗ 127773L)
5 − (temp ∗ 2836L);
6 if (seed < 0)
7 seed += 2147483647L; // (2<<31)−1
8 return seed;
9 }

10 int main() {
11 for(i=0; i<N; i++) {
12 int seed = random();
13 work(seed);
14 }
15 }

Figure 2: Commutative annotation allows multiple
calls of random to execute out of order, unlocking
loop level parallelism

tate such execution, the compiler uses the flexible code gen-
eration algorithm [9] to generate multiple versions of code
suited to the different components of the heterogeneous ar-
chitecture [3], and parameterizes the code on a relatively
small set of variables whose values are dynamically tuned to
optimize for any given execution environment [9].

An embedded system developer knows that certain code
blocks may execute efficiently on specific accelerators. The
developer can share this knowledge with the compiler by tag-
ging code blocks with affinity hints. The compiler uses the
hints to suggest initial program configurations in different
program phases to the run-time system.

2.3 Optimizing Run-time System
Workload, platform, and available resources constitute

a program’s execution environment. Recent work demon-
strates the effectiveness of an optimizing run-time system in
improving system performance by adapting program config-
uration to change in execution environment [9].

While deploying an embedded system, the developer spec-
ifies an optimization objective; for example, a real-time la-
tency requirement under specified peak power constraint and
average energy constraint. Given this objective, the run-
time system drives the embedded program through a series
of program configurations to identify the optimal configura-
tion. A program configuration may consist of: (1) the spe-
cific set of tasks chosen to implement desired functionality;
(2) the Degree of Parallelism (DoP), the varying number of
cores allocated to every parallel task; and (3) the mapping of
tasks to the different types of computational units available.
The initial program configuration may be the one generated
by the compiler using the programmer’s affinity hints. The
run-time system records statistics/characteristics of flexible
execution and the hardware platform by using monitoring
interfaces provided by the hardware. Different control and
optimization techniques, both open loop and closed loop,
use the gathered run-time information to converge upon the
optimal program configuration [8].

Severe resource constraints in embedded systems shrink
the configuration space of a flexible parallel program signif-
icantly. While this reduces the slack available to a run-time
optimizer, it also reduces the size of the search space poten-
tially leading to quicker convergence. Tight memory budget

CPU 1 GPU 1 GPU 2 GPU 3 CPU 2

A1

B1

C1

A2

A3

B2

B3

A4

A5 B4

B5

C2

C3

C4

C5

K2

K6

K4

K7

K3

K5

K8

Communication
Operation

Critical
Section

Barrier
Wait

CPU-GPU
PS-DSWP

CPU-GPU
DOANY

t0

t1

t4

Ti
m

e

t2

Ti
ith iteration of task T

 of program
Program

Reconfiguration

t3

K1

K9

Figure 3: Flexible Execution: Run-time system
adapts program configuration including task-to-core
mapping to suit execution environment

and smaller address space may make some parallelization
schemes impractical. Moreover, extreme demands for en-
ergy efficiency prevent adoption of parallelization schemes
with relatively high constant overhead such as speculative
parallelization. Consequently, the design of an efficient and
flexible run-time optimizer for embedded systems requires
additional research.

2.4 Flexible Parallel Execution
Figure 3 shows an example of the proposed execution

model on a hypothetical machine with two CPU cores and
three GPU cores. GPU core lanes are shaded grey. A par-
allel region consists of a set of concurrently executing tasks.
(The inscription inside each box indicates the task and its
dynamic instance; e.g., B5 represents the fifth dynamic in-
stance of task B.) At time t0, the program is launched with a
pipeline parallel configuration (PS-DSWP [10], which splits
a loop body across stages and schedules them for concur-
rent execution) having three stages corresponding to tasks
A, B, and C. A and C are executed sequentially by the CPU
cores whereas B is executed in parallel by three GPU cores
as determined by the run-time system. Note that a single
parallel region is executed on both the CPU and GPU, with
the appropriate code packages compiled for the CPU and
GPU, respectively, being dispatched. This is in contrast to
models where execution on the CPU and GPU is serialized
and orchestrated statically. The run-time system measures
the performance of this configuration and tries alternative
configurations to avoid a local maximum. At time t1, the
run-time system signals the program to pause. The core re-
ceiving this signal (CPU 1) acknowledges the signal at time

t2 and propagates the pause signal to the other downstream
cores. At time t3, the program reaches a known consistent
state2, following which the run-time system determines a
new allocation of resources. At time t4, the run-time sys-
tem launches a data-parallel configuration (DOANY [13],
which schedules loop iterations for parallel execution while
synchronizing shared data accesses by means of critical sec-
tions). Task K and the associated critical section imple-
ment the same functionality as tasks A, B, and C combined.
While the example execution shows some cores idling at a
barrier prior to reconfiguration, the barrier wait can be elim-
inated in common reconfiguration scenarios [8].

In the flexible parallel execution model, task serialization
is enforced only by the dependency structure of the algo-
rithm and global resource hazards, and not by artificial lo-
cal hazards created by the inflexibility of a programming
model. For instance, in OpenMP, a parallel region and its
continuation are serialized. By contrast, in flexible parallel
execution, the continuation may be launched on any avail-
able computation unit, even if the unit does not match the
affinity hint that may have been specified by the program-
mer for the continuation code block.

Finally, researchers have demonstrated that synergistic
use of extensions to the sequential programming model, a
parallelizing compiler, and an optimizing run-time system
for flexible parallel execution, unlocks scalable parallelism
and leads to efficient execution of a wide variety of programs.
One study improved the response time and throughput of
various benchmarks from the SPEC and PARSEC bench-
mark suites by 136% (geomean) over their original manual
parallel implementations. The study also maximized per-
formance under a variety of power and energy constraints.
Further, in the context of a multiprogrammed system, the
study improved system-wide performance while reducing en-
ergy consumption [8, 9].

3. CONCLUSIONS
To overcome the challenges of software development for

emerging embedded system platforms, this paper describes
a novel tightly integrated approach that has shown promise
on mainstream computing platforms. Applications are de-
veloped in the sequential programming model (including
legacy applications) and are automatically enhanced to ex-
ecute flexibly on heterogeneous multicore platforms. The
run-time system holistically optimizes the execution of mul-
tiple flexible parallel programs executing simultaneously.

While the effectiveness of this approach has been demon-
strated on mainstream computing platforms, research is yet
to be done to deploy this approach on embedded systems
with their unique challenges. However, the multidimensional
nature of performance objectives and constraints in the em-
bedded domain makes the manual, static development pro-
cess untenable, and makes an approach of the kind described
in this paper absolutely essential.

4. ACKNOWLEDGEMENTS
We thank Nick Johnson for his feedback. This material is

partly based on work supported by National Science Foun-
dation Grant 1047879. Jae W. Lee was supported by the
Korean IT R&D program of MKE/KEIT KI001810041244.

2An analysis can identify points at which the program can
be efficiently paused [8].

5. REFERENCES
[1] The OpenMP API specification.

http://www.openmp.org.

[2] R. Allen and K. Kennedy. Optimizing Compilers for
Modern Architectures: A Dependence-based Approach.
Morgan Kaufmann Publishers Inc., 2002.

[3] J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J.
Fink, R. Rabbah, and S. Shukla. A compiler and
runtime for heterogeneous computing. In Proceedings
of the 49th ACM/IEEE Design Automation
Conference (DAC), 2012.

[4] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi,
G.-Y. Wei, and D. Brooks. HELIX: Automatic
parallelization of irregular programs for chip
multiprocessing. In Proceedings of the Annual
International Symposium on Code Generation and
Optimization (CGO), 2012.

[5] NVIDIA Corporation. NVIDIA CUDA Programming
Guide 4, April 2011.

[6] The OpenAcc API specification for accelerators.
http://www.openacc-standard.org.

[7] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and
D. I. August. Commutative set: A language extension
for implicit parallel programming. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2011.

[8] A. Raman. A System for Flexible Parallel Execution.
PhD thesis, Department of Computer Science,
Princeton University, Princeton, New Jersey, United
States, December 2011.

[9] A. Raman, A. Zaks, J. W. Lee, and D. I. August.
Parcae: A system for flexible parallel execution. In
Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI), 2012.

[10] E. Raman, G. Ottoni, A. Raman, M. Bridges, and
D. I. August. Parallel-stage decoupled software
pipelining. In Proceedings of the Annual International
Symposium on Code Generation and Optimization
(CGO), 2008.

[11] J. Reinders. Intel Threading Building Blocks. O’Reilly
& Associates, Inc., 2007.

[12] A. Udupa, K. Rajan, and W. Thies. ALTER:
Exploiting breakable dependences for parallelization.
In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2011.

[13] M. Wolfe. DOANY: Not just another parallel loop. In
Proceedings of the 4th International Workshop on
Languages and Compilers for Parallel Computing
(LCPC), 1992.

