
UNISIM: An Open Simulation Environment and
Library for Complex Architecture Design and

Collaborative Development
David August†, Jonathan Chang†, Sylvain Girbal∗, Daniel Gracia-Perez‡, Gilles Mouchard‡, David Penry§, Olivier

Temam∗, Neil Vachharajani†
∗ INRIA, Orsay, France

† Dept. of Computer Science, Princeton University, Princeton, New Jersey
‡ CEA, Gif-Sur-Yvette, France

§ Dept. of Electrical and Computer Engineering, Brigham Young University, Provo, Utah

Abstract—Simulator development is already a huge burden
for many academic and industry research groups; future com-
plex or heterogeneous multi-cores, as well as the multiplicity
of performance metrics and required functionality, will make
matters worse. We present a new simulation environment, called
UNISIM, which is designed to rationalize simulator development
by making it possible and efficient to distribute the overall effort
over multiple research groups, even without direct cooperation.
UNISIM achieves this goal with a combination of modular soft-
ware development, distributed communication protocols, multi-
level abstract modeling, interoperability capabilities, a set of
simulator services APIs, and an open library/repository for
providing a consistent set of simulator modules.

I. INTRODUCTION

The UNISIM project philosophy stems from the following
six key observations on the current state of micro-architectural
simulation:

1) Many existing simulators are monolithic or designed for
a single architecture. As a result, it is difficult to extract
a micro-architecture component from the simulator for
reuse, sharing or comparison.

2) The trend towards Chip Multi-Processors (CMPs) im-
plies that the forcus of simulation will shift from in-core
behavior to system behavior; this shift will occur for two
reasons: (1) a large number of cores will slow cycle-level
simulators to unusable levels, and (2), communication
between cores may have a greater impact on overall chip
performance than in-core details.

3) For CMPs, the behavior of the software system (oper-
ating system) is more important, requiring full-system
simulation.

4) Another major trend is architectural customization and
heterogeneity. Heterogeneous architectures, much like
embedded System-On-Chips, bring together a large set
of IP blocks. These blocks vastly increase the potential
design space. As a result, rapid coarse-grain prototyp-
ing phases of these systems will become increasingly
necessary.

Supported by the HiPEAC Network of Excellence under contract No. IST-
004408.

Supported by National Science Foundation grant NGS-0305617. All opin-
ions, findings, conclusions, and recommandations expressed are those of the
authors and do not necessarily reflect the views of any of our supporters.

Manuscript submitted: 03-Jul-2007. Manuscript accepted: 30-Jul-2007. Fi-
nal manuscript received: 2007-Aug-07.

5) Simulators now require many more features than just
performance evaluation: power and temperature model-
ing, sampling for simulation speed, debugging support
for parallel computing, etc. These features are currently
implemented in an ad-hoc and non-reusable manner,
even though these issues are often orthogonal to the
micro-architectures being modeled.

6) The current lack of interoperability among the different
academic simulators hampers reuse, sharing, and com-
parison of ideas and hinders the take-up of academic
results by companies which cannot afford the effort to
integrate multiple academic simulators.

These observations form the rationale of UNISIM; the
key contribution of UNISIM is that it addresses all of these
issues in a unified fashion while still supporting distributed
development. The following five features of UNISIM permit
this goal to be met:

1) In order to address issue 1, UNISIM is a modular sim-
ulation environment, implemented as a layer on top of
the industry standard SystemC [1]. Besides modularity,
a key contribution of the UNISIM environment is a
particular focus on the reuse of control logic, which
corresponds to a large share of simulator code, and
which is often overlooked by simulation environments.

2) In order to address issues 2 and 4, UNISIM supports
an abstract level of modeling, called Transaction-Level
Modeling (TLM), in addition to the more common
detailed Cycle-Level Modeling (CLM). TLM simulators
are less accurate but much faster than CLM simulators.
UNISIM allows hybrid CLM/TLM simulators which can
zoom in on only the important architecture details.

3) In order to address issue 3, UNISIM contains full-system
functional simulators capable of booting a complex
operating system like Linux. These functional simulators
can be plugged into CLM or TLM simulators which are
compliant to a functional simulator API.

4) In order to address issue 5, UNISIM provides APIs
for a set of services. Any module implementing this
set of standardized calls automatically benefits from the
corresponding services. Moreover, since these services
are provided at the simulation engine level, i.e., inde-
pendently of any simulator, they can be easily modified
or replaced.

5) In order to address issue 6, UNISIM provides two



features: a library of compatible modules and models
which comes with the environment and is open to
external contributions, and the ability to inter-operate
with other simulators by wrapping them into UNISIM
modules.

The following sections describe these UNISIM features in
more detail and outline the current status of the platform and
initial experiments.

II. MODULARITY AND CONTROL

UNISIM is a modular simulation platform in which all
architecture blocks are mapped to corresponding software
modules. They can only communicate through explicit soft-
ware links corresponding to hardware wires. Beyond proper
software practice, this approach has two benefits: it provides
an intuitive mapping between the architecture block diagram
and the simulator, and it reduces implementation inaccuracies,
such as early signal access due to an incorrect variable read.
Other environments, such as SystemC, the Liberty Simulation
Environment (LSE) [15], and Asim [5] already propose mod-
ular simulation decomposition.

While mapping the architecture block diagram to a modular
simulator is both attractive and intuitive, it can conflict with the
objective of reusing simulator components. The key difficulty
is the reuse of control logic. Control is often implemented, or
simply represented, as centralized or only partially decentral-
ized; a symptomatic example is the DLX block diagram from
the famous textbook [7], where control is centralized into one
block. While this implementation is modular, it is difficult
to reuse: any modification in any of the hardware blocks
would require a modification of the control block. And while
control logic may correspond to a small share of transistors, it
often corresponds to the largest share of simulator code. For
instance, a cache bank can account for many more transistors
than the cache controller, but it is just an array declaration
in the simulator, while the cache controller can correspond to
several hundred simulator lines.

In order to address these conflicting decomposition/reuse
objectives, UNISIM uses a solution pioneered by LSE [15]
and the MicroLib environment [13]. This solution provides a
customizable representation of control which lends itself well
to reuse and modularity. This control abstraction takes the
form of a handshaking mechanism between modules: a module
makes no assumption about the other modules beyond its in-
coming and outgoing signals. All control logic corresponding
to interactions with other modules are embedded in these sig-
nals. This approach has two key benefits: (1) by construction,
it provides a distributed simulator implementation of control,
and (2) it defines a rigorous and standardized interface between
modules, which, in turn, improves modules’ interoperability. In
contrast, SystemC and Asim define signals for communicating
between modules, but no communication protocol for control,
so that most SystemC and Asim modules are not compatible
among themselves.

III. SIMULATION SPEED AND TRANSACTION-LEVEL
MODELING (TLM)

In spite of significant gains in simulator development pro-
ductivity, a caveat of modular simulators is simulation speed.

In a monolithic simulator such as SimpleScalar, a hardware
block sending data to another hardware block amounts to
writing a variable. In a modular simulator, additional overhead
is required to inform the receiving block that the data is
available and schedule the receiving block’s execution. As a
result, a modular simulator based on UNISIM or pure SystemC
can be more than 10 times slower than a monolithic simulator
like SimpleScalar.

We can address this issue in two ways. The first solution is
to use sampling. State-of-the-art sampling and checkpointing
techniques such as SimPoint [14] and TurboSMARTS [16]
require the simulation of a tiny fraction (usually much less
than 1%) of the total program in order to achieve an accuracy
on the order of 3% [14]. Unlike previous simulators, UNISIM
provides sampling and check-pointing techniques at the en-
gine level, independently of simulator modules, allowing any
simulator compliant with a check-pointing API to benefit from
the check-pointing service implemented within the engine.

However, while sampling techniques for user-level appli-
cations in single-core architectures are mature and efficient,
sampling techniques for multi-cores or for full-system sim-
ulation are still in their infancy and may not prove to be
accurate. As a result, UNISIM currently focuses on a sec-
ond, readily available solution: abstract-level modeling, also
called Transaction-Level Modeling (TLM) [6]; this solution
retains the modularity properties of CLM simulators through
a standard interface, but it relies on messages rather than a
handshaking protocol. TLM simulators are less accurate but
much faster than CLM simulators; for instance, on a PC with
a 2 GHz Centrino, a CLM simulator of the PowerPC 750
processor only (no system hardware except for an SDRAM
and a simplified bus) runs at 250 KIPS (Kilo-Instruction Per
Second), while our TLM simulator of a full hardware system
based on the PowerPC 750 (processor with caches, memory,
PCI bus and chipset, SDRAM, and system devices) runs at
6.5 MIPS, i.e., about 26 times faster. The rationale for TLM
is that, as the number of cores increases, detailed in-core
behavior may no longer have a critical impact on overall
architecture performance; it is therefore sufficient to focus
on transactions between cores. A typical TLM simulator for
performance evaluation is a functional simulator with timing
annotations indicating the time between transactions (memory
requests or communications with other cores/IP blocks). While
SystemC provides some support for TLM simulators, neither
LSE nor Asim do so.

UNISIM augments TLM in two ways. First, UNISIM adds
timing annotations to requests and transparently updates these
timing annotations based on the overall system behavior, e.g.,
delaying the effective start date of a load request due to
earlier contentions in the network. Second, UNISIM enables
the creation of modular hybrid TLM/CLM simulators. Hybrid
simulators allow the architect to focus on only on the most
critical portions of the design, which can significantly speed up
both development time and simulation time. Moreover, hybrid
simulators allow for incremental design of the architecture,
where details are added as they become available in the
design process. This latter asset will become increasingly
important as architectures shift towards customization and
heterogeneous designs. With hybrid simulators it is possible to



sketch architecture designs before hardware, or even software,
is fully available.

IV. FULL-SYSTEM SIMULATION

With the advent of CMPs, it is increasingly hard, if not
impossible, to ignore the impact of operating systems activity.
Whenever the number of threads can change during the
program execution, the operating system scheduler will come
into play, deciding which threads are executed where and for
how long. This is the minimum support for operating system
activity. However, if the simulation is bound to increasingly
focus on transactions, the overall operating system activity
should be considered, not just the scheduler.

Thus a simulation environment must support full system
simulation. Several alternatives exist and are already used, but
have undesirable limitations. Simics [9] is the most popular
platform. It is capable of supporting multiple different oper-
ating systems and ISAs, and it is very fast, up to 1 GIPS
on a recent PC, thanks to binary translation. However it is a
commercial and closed platform. For instance, CMP support
is publicly available only for Sun and PowerPC ISAs; as a
result, in order to simulate CMPs based on other ISAs, it is
necessary to run multiple instances of Simics and synchronize
them. This workaround has been implemented in GEMS [10],
but it remains cumbersome. Moreover, there is no way to alter
the internal workings of Simics, for instance to change the
simulated ISA. Other fast full-system simulators are Bochs
and QEMU, but they are geared towards virtualization rather
than hardware exploration. Another alternative is M5 [2], a
full-system simulator under BSD license with good modularity
properties, but it is a simulator targeted to a single architecture
rather than an environment for developing an array of simu-
lators. As a result, full-system support is intertwined with the
simulator, and it is not possible to reuse it for other micro-
architectures or ISAs.

Consequently, UNISIM proposes a reusable and free alter-
native. Full-System capabilities are implemented at the func-
tional simulator level in the form of TLM modules (chipsets,
interrupt controlers, peripherals and their buses among others)
through a UNISIM functional simulator API. Any UNISIM
micro-architecture simulator can use this API to access full-
system functional simulation. The UNISIM PowerPC func-
tional simulator is capable of booting Linux in 2 minutes
on a PC with a 2 GHz Centrino. This PowerPC full-system
functional simulator has also been used to build a full hardware
system emulating a PowerMac G3 (PowerPC 300 MHz) and
a PowerMac G4 (with PCI and a PowerPC G4 at 350MHz),
down to the chipset behavior.

V. SIMULATOR SERVICES

Beyond measuring the number of cycles, simulators tend
to include functionality which varies from a tool to another,
depending on the expertise of their authors. Some simulators
include power models, such as WATTCH or CACTI, others
include temperature models, or mechanisms for fast simulation
such as SMARTS and TurboSMARTS. Other functionality
are becoming essential for CMPs such as debugging support,
which is complex in a parallel environment, or check-pointing

Fig. 1. Full-System PowerMac G3 simulator with debugging services.

due to long program execution times, but they are only rarely
available in current simulators.

In order to both increase the functionality of simulators,
and to provide a more efficient way to leverage the work
of different research groups, UNISIM implements a set of
Service APIs. These APIs are essentially standardized function
calls; any simulator module implementing these function calls
automatically benefits from the corresponding services. For
instance, a cache module providing statistics on its activity
can get an evaluation of power consumption, provided a power
model is plugged in the engine. For instance, Figure 1 shows
the modules of our full-system Mac simulator, each with ports
for accessing a debugging API; the debugging tool plugged
into the UNISIM engine is the standard ddd debugger. This
is the second benefit of the Service APIs approach: the services
are plugged in at the engine level. Therefore, not only can any
simulator benefit from a service as long as it implements the
corresponding API, but it is also easy to replace a service
tool by another, provided again that it is API compliant. For
instance, two power models can be easily compared on any
simulator with that approach. For the aforementioned ddd
example, a small adapter (44 lines) must be developed to
make a UNISIM module, such as the TLM PowerPC 750,
gdb compliant.

VI. SIMULATOR INTEROPERABILITY

Not only is simulator functionality difficult to reuse and
inter-operate, but the simulator implementations of different
hardware blocks themselves are often excruciatingly difficult
to extract from a simulator and reuse in another one. While
SystemC is based partly on the vision of a standardized
environment which allows reuse and sharing of simulator
modules, in practice, reuse does not occur often. Most of
the SystemC simulators are not interoperable because of in-
sufficiently clear communication and development guidelines.
Beyond enforcing stricter development rules as mentioned in
Section II, UNISIM takes two additional steps for achieving
interoperability.

The first step consists in acknowledging that simulator
development is a huge effort, and any group which has invested
several man-years on a tool will not drop that effort easily.



As a result, UNISIM is designed to create heterogeneous
simulators by wrapping existing simulators within a UNISIM
module, allowing existing simulators to interact with UNISIM
modules, or even with other simulators. Besides the syntactic
wrapping, an adapter must sometimes be developed to translate
the simulator Model of Computation [4] into the UNISIM one,
i.e., the method through which the different modules or parts
of the simulator are called or woken up. In order to illustrate
that this approach is pragmatic, we have wrapped the full
SimpleScalar simulator into a UNISIM module, stripped it off
its memory model, which is too simplistic, and connected it to
another UNISIM module which contains a detailed SDRAM
module developed into a third simulation environment. Only
50 source lines of SimpleScalar had to be modified in order
to break the pipeline loop, and the resulting simulator is only
2.5 times slower despite the more complex memory model and
the wrapping.

The second interoperability action is to build an open library
or repository providing a set of consistent and interoperable
models and modules. The initial models are meant to replicate
existing industrial cores, and to build upon them, e.g., by im-
plementing multi-core models. The repository maintains infor-
mation about inter-module compatibility and module history
and allows users to easily locate modules meeting their needs,
thus improving the reuse of modules. Finally, this library is
open, allowing anyone to upload modules, while retaining
intellectual property rights to the modules and applying a
license of the author’s choice. This open library development
effort distinguishes UNISIM from LSE, which did not develop
a large library of models, and Asim, which is neither open nor
publicly available.

VII. CURRENT STATUS AND FUTURE WORK

Currently, the library/repository at http://www.unisim.org
contains a full-system functional simulator for a PowerPC 750,
user-level functional simulators for ARM-v3 to ARM-v5te,
and ST231, cycle-level models for a PowerPC405 single-
core and an ARM-v5te-like single-core, a cycle-level multi-
core model for a Shared Memory PowerPC 405 CMP with
snooping-based coherence protocol. In addition, the repository
contains two service APIs: a debugging API and a power API.

The future work is composed of three parts: the environ-
ment, the library, and research activities based on UNISIM.
For the environment, we are finalizing the development of
hybrid CLM/TLM simulators, and the next steps will consist
in implement fast simulation techniques at the engine level,
such as sampling, statistical simulation, and native execu-
tion. In addition, the modular nature of UNISIM enables
us to automatically parallelize the simulation as well as use
hardware accelerators. Future work will both integrate the
automatic parallelization techniques from [12] and provide
automated partitioning and synthesis tools for reconfigurable
hardware [11].

Several groups are developing models which will be in-
cluded in the library: the full-system PowerMac G3/G4 was
jointly developed by CEA and BSC, a cycle-level model of
the IBM Cell was developed at UPC/BSC [3], a model of
an ST231 VLIW processor, and later on a distributed-memory

multi-core, is being developed at INRIA, an ARM9 cycle-level
and full-system simulator is being developed at CEA.

Finally, several research efforts are being undertaken or con-
templated around UNISIM. For instance, we are developing a
library browser for automatically scanning the design-space
provided by the set of modules and models, in order to keep a
permanent ranking of the best possible architectures, according
to various criteria. This ranking would be updated as new
modules are uploaded. A parameter API is being investigated
to serve for this DSE browser. We also plan to investigate how
to automatically derive timing annotations for TLM simulators
using ANN-based [8] modeling.

REFERENCES

[1] “SystemC, OSC Initiative,” OSCI, Tech. Rep., 2003.
[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi,

and S. K. Reinhardt, “The m5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26b, no. 4, pp. 52–60, 2006.

[3] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and
E. Ayguade, “Implementation and validation of a cell simulator using
unisim,” in In 3rd HiPEAC Industry Workshop, Haifa, Israel, Palo Alto,
California, April 2007.

[4] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuerdorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong,
“Overview of the Ptolemy project,” EECS, University of California at
Berkeley, Tech. Rep. UCB/ERL No. M99/37, 1999.

[5] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan,
“Asim: A performance model framework,” IEEE Computer, vol. 0018-
9162, pp. 68–76, February 2002.

[6] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Springer, 2002.

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, 1996.

[8] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee, “Methods of inference and learning for performance
modeling of parallel applications,” in PPoPP ’07: Proceedings of the
12th ACM SIGPLAN Symp. on Principles and practice of parallel
programming. New York, NY, USA: ACM Press, 2007, pp. 249–258.

[9] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[10] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset,” SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 92–99,
2005.

[11] D. Penry, Z. Ruan, and K. Rehme, “An infrastructure for hw/sw
partitioning and synthesis of architectural simulators,” in WARP 2007:
2nd Workshop on Architectural Research Prototyping, June 2007.

[12] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. August,
and D. Connors, “Exploiting parallelism and structure to accelerate the
simulation of chip multi-processors,” in Proc. of the Twelfth Int. Symp.
on High-Performance Computer Architecture, February 2006, pp. 29–40.

[13] D. G. Pérez, G. Mouchard, and O. Temam, “Microlib: A case for
the quantitative comparison of micro-architecture mechanisms,” in Int.
Symp. on Microarchitecture. ACM, Dec 2004.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS X, October
2002, pp. 45–57.

[15] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I.
August, “Microarchitectural Exploration with Liberty,” in Proc. of the
34th Annual Int. Symp. on Microarchitecture, Austin, Texas, USA.,
December 2001.

[16] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe, “Tur-
boSMARTS: Accurate Microarchitecture Simulation Sampling in Min-
utes,” SIGMETRICS ’05, June 2005.


