
A Case for Compressing Traces with BDDs
Graham D. Price and Manish Vachharajani

Department of Electrical and Computer Engineering, University of Colorado at Boulder
Email: {Graham.Price,manishv}@colorado.edu

Abstract— Instruction-level traces are widely used for program
and hardware analysis. However, program traces for just a few
seconds of execution are enormous, up to several terabytes in
size, uncompressed. Specialized compression can shrink traces
to a few gigabytes, but trace analyzers typically stream the
the decompressed trace through the analysis engine. Thus, the
complexity of analysis depends on the decompressed trace size
(even though the decompressed trace is never stored to disk).
This makes many global or interactive analyses infeasible.

This paper presents a method to compress program traces
using binary decision diagrams (BDDs). BDDs intrinsically sup-
port operations common to many desirable program analyses
and these analyses operate directly on the BDD. Thus, they are
often polynomial in the size of the compressed representation. The
paper presents mechanisms to represent a variety of trace data
using BDDs and shows that BDDs can store, in 1 GB of RAM,
the entire data-dependence graph of traces with over 1 billion
instructions. This allows rapid computation of global analyses
such as heap-object liveness and dynamic slicing.

I. INTRODUCTION

Performance tuning and hardware debugging make exten-
sive use of instruction-level trace analysis [13]. Researchers
have also suggested trace-based tools to debug complex soft-
ware [14]. Unfortunately, faster processors and complex bugs
increase the size of required traces. Trace files can easily grow
to terabytes in size depending on the information collected and
the duration of traced execution.

In response, researchers have developed streaming compres-
sion algorithms (e.g., Burtscher et al. [3]) that can compress
these traces by a factor of 10 or more. Unfortunately, these
techniques do not speed trace analysis. Compression tech-
niques force analyzers to stream a decompressed version of
the trace through the analysis engine. Thus, analyses have
complexity that depends on the decompressed trace size,
even though the full decompressed trace is never stored on
disk. With large traces, this time-consuming process prohibits
certain global analyses and interactive tools. Examples of pro-
hibitively expensive operations include memory-data liveness
visualization, trace slicing [15], and interactive visualization
of application-level parallelism.

Ideally, a compressed trace format should allow analyses
to operate directly on the compressed representation with
complexity that is a function of compressed trace size. Then,
if large portions of compressed traces fit in memory, global
analyses and interactive visualization become possible. Larus
et al. propose such a technique for whole program path
analysis [7]. The technique uses the SEQUITUR compression
method and works well for finding sequence matches in
program execution. But, it does not permit direct application

of data-centric analyses (e.g., trace slicing) that are of interest
to system designers and programmers.

This paper presents a compression technique, based on
Binary Decision Diagrams (BDDs) [2] that (1) supports data-
flow centric analyses such as liveness and slicing, (2) has
sufficient compression that large portions of program execution
can be held in RAM, (3) allows efficient analysis, and (4)
permits random access to trace data.

II. TRACES AS BDDS

Binary decision diagrams (BDDs) [2] are graph data struc-
tures that represent arbitrary boolean functions. Under the cor-
rect circumstances, they represent these functions compactly,
achieving exponential reduction in size in many practical
cases. Furthermore, operations used in trace analysis map to
BDD operations. Worst-case, these operations complete in
polynomial time in the number of nodes in the BDD, the
size of the compressed representation [2]. Thus, BDDs are
an attractive candidate for performing global and interactive
analysis of large traces.

To use BDDs to compress and analyze traces, the following
questions are answered below. (1) How does one represent
a trace as a boolean function? (2) How does one analyze a
boolean function representation of a trace? (3) How do BDDs
compress the boolean function representation?

A. Traces as Boolean Functions

Boolean functions can be used to represent arbitrary sets of
data if the possible elements of the set are encoded in binary.
For example, if the universe (denoted Ω) has 4 elements α,
β, γ, and δ, one can represent subsets of these elements by
encoding them using two boolean variables x and y such that
α = (0, 0), β = (0, 1), γ = (1, 0), and δ = (1, 1), where each
tuple is of the form (x, y).

To represent the set F = {α, γ}, one creates the boolean
indicator function for F, f(x, y), such that f evaluates to true
if and only if its argument (x, y) encodes α or γ. In this case,
f = y′ (i.e., not y). To test if some element λ is in a set
with indicator function g, one evaluates g with arguments that
correspond to λ. To see if α is in F , one computes f(α) =
f(0, 0) = 0′ = 1, and thus α is in the set F . f(β) = f(0, 1) =
1′ = 0, so β is not.

Using this idea, boolean functions, and thus BDDs, can
be used to store arbitrary data. To represent the set of all
program locations seen in a trace, one stores sets of n-bit
unsigned integers, where n is the number of bits in the program
counter (PC). Here the trivial binary encoding of each program



location is its PC value expressed in binary. Assuming a 4-
bit PC encoded from MSb to LSb as (x, y, z, a), a trace that
only executed the instructions at location 4 and 5 would be
represented by the function h = x′ ∧ y ∧ z′ = x′yz′.

Tuples drawn from Γ×Λ can be used to represent the data
addresses accessed by each program location, where Γ is the
set of program locations and Λ is the set of possible data
addresses. The fact that program location 7 accesses addresses
10, 11, 12, and 13, and that location 6 accesses addresses 10
and 11 is modeled by the set

F = {(7, 10), (7, 11), (7, 12), (7, 13), (6, 10), (6, 11)}

Now, let boolean vectors g and l indicate elements of Γ
and Λ using the trivial encoding. If all memory locations are
4-bits (||g|| = ||l|| = 4) the indicator function for F , f , is

f(g, l) = g′3g2g1l3l
′
2l1 ∨ g′3g2g1g0l3l2l

′
1

where g0 and l0 are the LSb in the respective encodings.
The notion of sequence is the final element in understanding

BDDs as trace representations. Instruction traces are usually
stored as an ordered data structure. On disk the relative
position of an instruction in a trace is determined by its relative
position in the file. Older instructions are at earlier positions;
newer instructions are at later positions. This notion of pro-
gram order is critical for understanding dynamic properties
such as instruction-level parallelism, data dependences, etc.

To capture the notion of order, assign every dynamic in-
struction in a trace a sequence number called the dynamic
instruction number or DIN (e.g., the 1st instruction is 0, the
2nd is 1, the 100th is 99, etc.). Any pertinent data about
an instruction trace is represented using sets of (DIN, data)
tuples. For example, to store which instructions in the trace
correspond to which program locations, one builds the set P
that stores a (DIN, PC) tuple per instruction. To model the
fact that the 45th instruction in the trace is at PC address
0x00ffede0, one adds the tuple (44, 0x00ffede0) to P . Thus
P ’s indicator function p has p(44, 0x00ffede0) = 1.

Note that it is often useful to store derived trace properties
in BDD form. For example, many trace-based analyses, such
as memory liveness or slicing, require the data-dependence
graph (DDG) for all instructions in a trace (usually computed
implicitly) [15]. The data dependence graph G = (V,E) has
as its vertex set, V , all the DINs in the trace. Thus, the data of
interest is the edge set E, which is a set of (DIN,DIN) tuples.
Note that since all address information is available during trace
collection, the DDG can include dependences through memory
as well as through registers.

B. Trace Analysis with BDDs

We now tackle the question of how to analyze traces stored
using boolean equations (and thus BDDs). For brevity, a full
treatment is omitted, but a method of doing forward slice
analysis [15] using boolean equations is presented below.
Slice analysis is the problem of finding the set of instructions
that are part of a data-dependence chain that originates at
(forward slicing) or ends at (backward slicing) a given set of

function forward slice(e,Id)
sold = 0 // Empty set
s := Id

do
e′ := e ∧ s
s := ∃d1.e′

s = rename(d2,d1, s)
while(s 6= sold)
return s

Fig. 1. Computing a Forward Slice using BDDs.

instructions. Other work has described how to map common
operations in other analyses to BDDs [12], [15], with Zhang
et al. being the first to apply these ideas to bit-sets maintained
during trace analysis.

We have already described the simple analysis that tests
for inclusion in some precomputed set. For example, to
know if the instruction identified by DIN 1025 (from now
on instructions will be referred to by their DIN number) is
dependent on DIN 107, one can simply see if (107, 1025) is
in E (defined above). To do so, one computes e(107, 1025),
where e is E’s indicator function. This operation is linear in
the number of variables in the BDD for e [2].

Now, consider the problem of finding the set of all instruc-
tions that are directly dependent on an instruction with DIN
d, in other words the set of immediate successors of d in
the DDG (called an image computation [1]). To do this, one
must extract all edges in E of the form (d, x), for arbitrary
x. Denote this set by {(d, ∗)}. Assuming that d is encoded by
(d0 = 0, d1 = 0, d2 = 1, d3 = 1), the indicator function
for {(d, ∗)} is I{(d,∗)} = d′0d

′
1d2d3. The set of all edges

of the form (d, x) is then simply E ∩ {(d, ∗)}. In terms of
the indicator functions, one computes e ∧ I{(d,∗)}. Note that
while we considered the case of direct dependents of a single
instruction d, one could just have easily constructed a function
I that represented all possible edges from a set of instructions
and computed e ∧ I to extract the edges. Note further that
building BDDs for these functions is straight-forward and
computing the logical and of two BDDs is polynomial in the
BDD size [2].

Now all but one building block for the slice analysis
algorithm are in place. Recall that one can extract the set of all
tuples (d, x) that are in E. Call this set E′. One performs slice
analysis by iterating this computation, but to do so one must
extract the set of successor instructions S = {x|(z, x) ∈ E′}.
One can then build the set {(S, ∗)} and repeat the above
computation until the slice is generated. To perform this
extraction, one uses existential quantification (denoted ∃), an
operation polynomial on BDDs. Given a function f(x,y),
where y is a vector of boolean variables and x a single boolean
variable, g = ∃x.f = f(1,y) ∨ f(0,y). To extract S defined
above, one computes S = ∃d1.E′ where tuples in E′ are of
the form (d1,d2) and d1,d2 are boolean vectors.



Z

01110 1 11

X

Y Y

Z ZZ

Fig. 2. A Three-variable Binary Decision Tree

arc

1

Z

YY

X
Inverting
false

(a) Naı̈ve Order

1

Z

X

Y

(b) Better Order

Fig. 3. A Three-variable ROBDD

Figure 1 shows how to compute the forward slice of an
instruction with DIN d. In the figure, e is given as the indicator
function for the set of edges in the data dependence graph,
Id is given as the indicator function for the instruction with
DIN d, and s is the indicator function for the forward slice
that is computed. The variables in indicator function Id are in
the vector d1, the variables in s are also in vector d1, and
the variables in e are (d1,d2). The function rename takes
a function s and renames the variables from set d2 to the
corresponding variables in set d1. This operation is linear in
the size of the BDD. Comparing two BDDs to see if they are
equal is a constant time operation [2].

While the above describes a few simple analyses, BDDs can
be used for much more sophisticated work. For a discussion,
readers are referred to the references [1], [12], [15].

C. Compressibility of Trace BDDs

A boolean function can be represented using a binary
decision tree. Figure 2 shows a binary decision tree of the
three-variable function f(x, y, z) = x′y + xy′ + z. Arcs with
a circle correspond to when the variable is false, plain arcs
to when the variable is true. Traversing the left edge of the
graph, we find that f(0, 0, 0) = 0.

This tree can be compressed into a reduced ordered BDD
(ROBDD) by repeatedly applying three rules. (1) Two nodes
with the same label and children are merged. (2) Any node
with identical children (and no inverting arcs, see rule 3) is
removed and incoming arcs redirected to the child. (3) If a
pair of nodes represent complementary functions (g and g′),
the nodes are merged into one node for g, the arc to g′ is
redirected to g and marked as inverting. The ’1’ node is read
as 0 if reached through an odd number of inverting arcs.

Figure 3a shows the resulting BDD for f . In general, BDDs
may compress the tree exponentially.

ROBDDs are canonical; equivalent functions have the same
ROBDD. Note that inverting arcs allow equivalent functions
to have different ROBDDs, but it is possible to always mark
arcs as inverting in a consistent fashion to prevent this [8].
Thus, the compression the BDD achieves depends only on
the function represented and the variable ordering. Compare
the BDD in Figure 3a, which uses the order (X,Y,Z), to the
smaller BDD for f in Figure 3b that uses order (Z,Y,X).
Small changes in the ordering can result in order-of-magnitude
changes in the size of the BDD. Note further that the best
variable ordering depends on the function represented. For
a detailed discussion of BDD variable ordering, readers are
referred to the literature [4], [6], [9].

III. RESULTS

Not all functions are amenable to BDD representation. This
section shows that traces are amenable to BDDs by showing
that trace data dependence graphs achieve compression ratios
from 12x to 60x.

A. Experimental Setup

Experiments measure compression using BDDs to store
the data-dependence graph (DDG) for true memory and reg-
ister data-dependences (as described in Section II) for 64-
bit PowerPC instruction-level traces of a number of gcc-
compiled SPECint 2000 benchmarks. The BDDs themselves
were generated and stored using CUDD [10] on a 32-bit
platform. Each DIN in the tuple was a 64-bit number, for
a total of 128 bits per tuple, and 128 variables in each BDD.

B. Compression Results

Figure 4 shows the number of tuples that fit into a fixed
amount of memory. Note that as memory-size increases the
number of stored DDG edges increases super-linearly in most
cases. This is expected since BDDs can achieve exponential
reduction in representation size [5], [11]. Though 181.mcf
shows only linear growth, it achieves over 50x compression
at all sizes shown (see below). Note further that in only 1 GB
(230 bytes) of RAM, we can store 500 million to 4 billion
DDG edges for up to 1.04 billion instructions (12x to 60x
more edges than the naı̈ve representation). This clearly shows
that BDDs provide the promise of large scale analysis within
reasonable memory and time bounds.

Figure 5 shows how the compression ratio varies as the
number of encoded operations increases. The compression
ratio is the size of the naı̈ve representation of the set of tuples
(i.e., 16 × number of tuples) divided by the size of the BDD
(i.e., number of BDD nodes × BDD node size) . For clarity,
only a representative set of benchmarks were included. All
omitted benchmarks behave as scaled versions of 186.crafty.
The scaling factor is roughly the ratio of the value of the 1GB
bar for the omitted benchmark in Figure 4 to the value of the
1GB bar for 186.crafty. Benchmarks 181.mcf, 197.parser, and
175.vpr are outliers. Unlike the other benchmarks, 197.parser



0

1 ·109

2 ·109

3 ·109

4 ·109
T

up
le

C
ou

nt

16
4 gz

ip

17
5 vp

r

25
4 ga

p

25
5 vo

rte
x

30
0 tw

olf

18
1 mcf

18
6 cra

fty

19
7 pa

rse
r

Benchmark

1024 MB
512 MB
256 MB

Fig. 4. Number of Tuples for Fixed Memory Bound

0

20

40

60

C
om

p
re

ss
io

n
R

at
io

0 2 · 107 4 · 107 6 · 107

Operation Count

181.mcf
197.parser
175.vpr
186.crafty

Fig. 5. Compression Ratio vs. Operations Processed

and 175.vpr show long-term decline in compression ratio after
the initial spike. 181.mcf is an outlier because it initially shows
excellent compression, only a modest dip, and then the usual
long term increase. Also, note that some benchmarks show
superb compression (e.g., 181.mcf) while most show modest
ratios. Further study is needed to understand these variations.

To appreciate the performance of BDD-compressed trace
analysis, consider the following. Using standard compression
techniques [3], it takes 1.8s just to find the 2 millionth
instruction in a trace of 186.crafty. Using BDDs, in one fourth
the time, one can compute the 2 millionth instruction’s forward
slice to a depth of 1000 DDG edges.

IV. CONCLUSION

This paper shows that BDDs offer a method for efficiently
storing and analyzing trace information. The method converts
trace data into a boolean equation which is then represented
using a BDD. The paper demonstrates that under the right
variable ordering, the BDD representation offers excellent
compression. Furthermore, unlike most prior compression
techniques, analyses operate directly on the compressed repre-
sentation (i.e., the BDD). Thus, analysis complexity depends
on the compressed trace size. The paper demonstrates up to
a 50x compression ratio when compressing PowerPC traces
for SPECint 2000 benchmarks. With these compression ratios,
1 GB of RAM can hold the entire data-dependence graph
of traces with over 1 billion instructions, allowing rapid
computation of global analyses such as heap-object liveness,
dynamic slicing, and many others.

ACKNOWLEDGMENTS

The authors thank the reviewers for their insightful com-
ments, Fabio Somenzi for his advice, Intel for support of this
work, and Chinmay Ashok, Matthew Iyer, Josh Stone, and
Neil Vachharajani for the Adamantium framework. Computer
time was provided by NSF ARI Grant #CDA-9601817, NSF
MRI Grant #CNS-0420873, NASA AIST grant #NAG2-1646,
DOE SciDAC grant #DE-FG02-04ER63870, NSF sponsorship
of the National Center for Atmospheric Research (NCAR), and
a grant from the IBM SUR program. The ideas herein are not
necessarily those of the above organizations.

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,
S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and
T. Villa. Vis: A system for verification and synthesis. In T. Henzinger
and R. Alur, editors, Eigth Conference on Computer Aided Verification
(CAV’96), pages 428–432. Springer-Verlag, Rutgers University, 1996.
LNCS 1102.

[2] R. E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transaction on Computers, C-35(8):677–691, August 1986.

[3] M. Burtscher and N. Sam. Automatic generation of high-performance
trace compressors. In Proceedings of the 2005 International Conference
on Code Generation and Optimization, pages 229–240, 2005.

[4] J. H. III and F. Brglez. Design of experiments in bdd variable
ordering:lessons learned. In Computer-Aided Design, 1998. ICCAD 98.
Digest of Technical Papers. 1998 IEEE/ACM International Conference
on, pages 646–652, 1998.

[5] J. Jain, A. Narayan, C. Coelho, S. P. Khatri, A. L. Sangiovanni-
Vincentelli, R. K. Brayton, and M. Fujita. Decomposition techniques
for efficient robdd construction. In Lecture Notes In Computer Science;
Vol. 1166; Proceedings of the First International Conference on Formal
Methods in Computer-Aided Design, pages 419–434, 1996.

[6] S.-W. Jeong, B. Plessier, G. Hachtel, and F. Somenzi. Variable ordering
for binary decision diagrams. In Proceedings of the 3rd European Design
Automation Conference, pages 447–451, 1992.

[7] J. R. Larus. Whole program paths. In Proceedings of the SIGPLAN
’99 Conference on Programming Languages Design and Implementation
(PLDI 99), pages 259–269, May 1999.

[8] J. C. Madre and J. P. Billon. Proving circuit correctness using formal
comparison between expected and extracted behavior. In Proceedings of
the 25th Design Automation Conference (DAC), pages 205–210, 1988.

[9] R. Rudell. Dynamic variable ordering for ordered binary decision dia-
grams. In ICCAD ’93: Proceedings of the 1993 IEEE/ACM international
conference on Computer-aided design, pages 42–47, Los Alamitos, CA,
USA, 1993. IEEE Computer Society Press.

[10] F. Somenzi. CUDD: Colorado University Decision Diagram package,
release 2.30, 1998.

[11] F. Somenzi, K. Ravi, K. L. McMillan, and T. R. Shiple. Approximation
and decomposition of binary decision diagrams. In Annual ACM
IEEE Design Automation Conference Proceedings of the 35th annual
conference on Design automation, pages 445–450, 1998.

[12] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In PLDI ’04: Proceedings of
the ACM SIGPLAN 2004 conference on Programming language design
and implementation, pages 131–144, New York, NY, USA, 2004. ACM
Press.

[13] Y. Wu and J. R. Larus. Static branch prediction and program profile
analysis. In Proceedings of the 27th Annual International Symposium
on Microarchitecture, pages 1–11, December 1994.

[14] X. Zhang and R. Gupta. Whole execution traces. In 37th International
Symposium on Microarchitecture (MICRO-37), pages 105–116, 2004.

[15] X. Zhang, R. Gupta, and Y. Zhang. Efficient forward computation of
dynamic slices using reduced ordered binary decision diagrams. In
26th International conference on Software Engineering (ICSE-26), pages
502–511, 2004.


