
From Sequential Programs to Concurrent Threads
Guilherme Ottoni Ram Rangan Adam Stoler Matthew J. Bridges David I. August

Departments of Computer Science and Electrical Engineering
Princeton University

Abstract— Chip multiprocessors are of increasing importance
due to recent difficulties in achieving higher clock frequencies
in uniprocessors, but their success depends on finding useful
work for the processor cores. This paper addresses this challenge
by presenting a simple compiler approach that extracts non-
speculative thread-level parallelism from sequential codes. We
present initial results from this technique targeting a validated
dual-core processor model, achieving speedups ranging from 9-
48% with an average of 25% for important benchmark loops over
their single-threaded versions. We also identify important next
steps found during our pursuit of higher degrees of automatic
threading.

I. I NTRODUCTION

For years, a steadily growing clock speed has been relied
upon to consistently deliver increased performance for a
wide range of applications. Recently, however, this trend has
changed, as the microprocessor industry can no longer increase
clock speed because of difficulties related to power con-
sumption, heat dissipation, and other factors. Meanwhile, the
exponential growth in transistor count remains strong, causing
major microprocessor companies to add value by producing
chips that incorporate multiple processors. While chip multi-
processors (CMPs) increase throughput for multiprogrammed
and multi-threaded codes, they do not directly benefit the many
important existing single-threaded applications.

Compiler writers have had little success in extracting thread-
level parallelism (TLP) from sequential programs. Good re-
sults have been obtained in a few restricted domains, most
noticeably in parallelizing scientific and numeric applica-
tions [7]. Such techniques perform well on counted loops
manipulating very regular, analyzable structures, consisting
mostly of predictable array accesses. In many cases, sets of
completely independent loop iterations (DOALL) occur natu-
rally or are easily exposed by loop traversal transformations.
However, many programs have complex control flow, recursive
data structures, or general pointer accesses, rendering these
techniques unsuitable in general.

Since automatic thread extraction has been difficult for
compiler writers to achieve, computer architects have turned to
speculative [3], [6], [10] and multiple-pass [8], [2] techniques
to make use of additional hardware contexts. These techniques
are promising, but generally require significant hardware sup-
port to handle recovery in the case of mis-speculation or
to affect the warming of microarchitectural structures. These
approaches are also limited by the increasing mis-speculation
rates, penalties, and pollution encountered as they become
more aggressive. Even the best of these techniques do not

Manuscript submitted: 3 May 2005. Manuscript accepted: 13 June 2005.
Final manuscript received: 20 June 2005.

replace the need for automatic, non-speculative thread extrac-
tion. Instead, they play an important, largely orthogonal role.

The goal of this work is to automatically thread ordinary
C programs, inspired by the above mentioned compiler and
computer architecture work and by successes of ILP-extraction
techniques. Three obstacles become apparent. Overcoming the
primary obstacle involves embracing a type of parallelism that
is easier to find in sequential applications,pipelined paral-
lelism. Doing so implies relatively minor hardware changes,
but allows leveraging of powerful ILP optimizations and
analyses to extract TLP. The two secondary obstacles involve
limitations in today’s compilers that we hope to address in the
future.

This paper describes these obstacles and our approach to
eliminating them. We then describe a compiler technique,
built on an aggressive ILP compiler, that overcomes the
primary obstacle by automatically extracting, without re-
sorting to speculation, long-running, concurrently-executing,
pipelined threads from unmodified sequential C programs.
We also briefly describe the hardware support necessary to
execute these pipelined threads without costly synchronization
overhead. Using a dual-core processor model with validated
processor cores, we demonstrate promising initial results.

II. OBSTACLES TOTHREAD EXTRACTION

A. Type of Parallelism

Significant untapped parallelism already exists in sequen-
tial applications. Due to complex control flow and irregular
pointer-based memory accesses, this parallelism is not of the
DOALL type at which scientific parallelization techniques
excel. Instead, our limit studies show that loops in sequen-
tial C/C++ codes generally have one or more cross-iteration
dependence chains. Fortunately, in such cases, parts of each
iteration can be pipelined and overlapped with other sections
in different iterations. Thispipeline parallelismis often ex-
ploited by ILP techniques such as loop unrolling and software
pipelining (but often with varied success in this domain due
to variable latencies). However, since these techniques do
not extract threads, they cannot be directly applied to chip
multiprocessors. Pipelined parallelism is also exploited with
DOACROSS thread parallelization, but such techniques are
not general enough to handle uncounted loops, control flow
and irregular pointer-based memory accesses [7]. Additionally,
in creating DOACROSS loops, the inter-core communication
latency is inserted on the recurrence of the loop, elongating
the critical path of the loop in the amount of the number
of iterations multiplied by the communication latency. The
technique presented in this paper exploits pipelined parallelism
without such limitations. In particular, no communication
latency is inserted on loop critical paths.



0.0

0.5

1.0

1.5

2.0

2.5
To

ta
lI

te
ra

tio
ns

(1
08

)

100 102 104 106 108

Average Inner Loop Iterations per Invocation

Leaf
Leaf+1
Leaf+2
All

Fig. 1. For an aggressively inlined 186-crafty, the trip-count of loops visible
within each function (“Leaf”); within each function and some number of
parents (“Leaf+N”); and across the whole program (“All”) as a cumulative
distribution function weighted by total inner-loop iteration count.

B. Scope of Optimization

Extracting pipeline parallelism involves the partitioning of
loops in some fashion. Naturally, to be profitable, the loops
partitioned must represent a significant portion of the total
execution time and must be long running (many iterations per
invocation) to overcome any one-time costs. Loops of this
type generally exist in programs, but are not always visible to
the compiler. Since traditional compilers use functions as the
unit of optimization (though analysis may be inter-procedural),
inlining is employed to increase the scope of optimization [5].
Full inlining is not possible because inlining increases code
size beyond acceptable limits and cycles may exist in the call
graph. As a result, profitable loops may not be visible to the
compiler for TLP extraction even after aggressive inlining.

Consider Figure 1, which characterizes an aggressively
inlined version of 186.crafty from SPECINT2000. For each
inner loop in the benchmark, the iterations were assigned to
the outermost loop(s) in the function. The outermost loop(s)
was then categorized according to the number of iterations
per invocation (IpI). Each line in the figure is a cumulative
distribution of the total number of inner loop iterations for all
outermost loops with IpI at most the given x-axis value. The
solid line labeled “Leaf” shows that, when restricting visilibity
to leaf functions after aggressive inlining, roughly two-thirds
of total program iterations occur within loops which iterate
less than 20 times per invocation. Generally, only loops with
an IpI of at least103 are suitable for optimization. Thus,
limiting the compiler’s scope to a single function is unlikely
to yield much gain for optimizations with one-time costs. The
remaining lines show that the situation improves if compilation
scope were to include either 1, 2, or all calling functions
when determining outermost loops. Not surprisingly, when the
outermost loop(s) is the main loop of the program, the IpI
is a significant fraction of the program runtime. To increase
program optimization scope, we are currently exploring an
alternative to inlining which gives compilers whole-program
scope without code growth.

Just as Figure 1 shows that inlining is not enough, Figure 2
shows that limiting partitioning to just inner loops, even when
ignoring function scoping, also leads to reduced optimization
opportunities. Roughly half of the innermost loops, weighted
by inner loop iteration count, have trip counts less than 100,
as shown by theInner line. The remaining lines show that

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

To
ta

lI
te

ra
tio

ns
(1

09
)

100 102 104 106 108 1010

Average Inner Loop Iterations per Invocation

Inner
Inner+1
Inner+2
All

Fig. 2. For SPECINT 2000 programs, the trip-count for inner loops (“Inner”),
for some level of loop nest (“Inner+N”), and for all levels (“All”) as a
cumulative distribution function weighted by total inner-loop iteration count.

assigning the innermost iterations to the loop that contains
the innermost loop greatly increases the IpI. This is consistent
with our experience, which has shown that inner loops are not
sufficient for optimization. As a result, the technique presented
in this paper is designed to handle arbitrary control flow,
including control flow created by nested loops.

C. Memory Analysis

With the goal of extracting ILP, researchers have produced
exceptional memory dependence analysis techniques. These
techniques are sufficient to enable the successful extraction of
threads as described here. However, we observe two problems
that, if addressed, would produce better results1. First, since
we extract threads from low-level codes (for reasons described
in the next section), memory analysis information must be
accurate in the back-end of the compiler. Traditionally, com-
pilers perform memory analysis in the front-end and propagate
this information to the back-end. However, conservative prop-
agation during optimizations degenerates the accuracy of this
result [4]. Second, since sequential codes often have recursive
data structures, a shape analysis scalable to real codes would
reduce false cross-iteration dependences.

III. D ECOUPLEDSOFTWARE PIPELINING

In our approach, we leverage prior successful ILP com-
pilation research to address the compilation challenge of
Section II-A. We illustrate our approach using the code of
Figure 3, which sums the elements of a linked list of linked
lists of integers. Figure 4(a) shows the dependence graph
corresponding to the code in Figure 3(b). This dependence
graph accounts for all relevant dependences: data, control,
intra-iteration (solid), and loop-carried (dashed lines).

Like the loop in Figure 3, loops typically found in sequential
codes are not DOALL in nature. DOACROSS partitioning is
not profitable due to reasons mentioned earlier. Our technique,
called Decoupled Software Pipelining(DSWP), is a more
general form ofpipeline parallelizationthat overcomes the
drawbacks of DOACROSS parallelization (1) by working in
the presence of any kind of memory dependences; (2) by
extracting more scalable parallelism; and (3) by reducing
sensitivity to inter-thread communication latency (by keeping
it out of the critical path). DSWP was first introduced as

1These problems manifest, for example, inepicenc, our lowest performing
benchmark. The 9% gain becomes 45% without these problems.



(a) C source code (b) Intermediate representation

Fig. 3. Sample code. Adds up the elements in a list of lists.

(a) Initial (b) Node-split B

Fig. 4. Dependence graphs. Data dependences are labeled with the
corresponding data item. Control dependences are unlabeled. Intra-iteration
dependences are solid, and loop-carried dependences are dashed.

a method to hide cache misses in the traversal of recursive
data structures as illustrated in prior work using hand-modified
benchmarks [9]. Here, we establish DSWP as a more general
thread parallelization technique and propose a systematic way
to perform it in a compiler.

In order to support the pipelined communication of val-
ues between threads, DWSP uses asynchronization array
to provide a conduit for communication and synchronization
between the threads [9]. The synchronization array can be
a special register file that implements queue semantics be-
tween cores. The threads executePRODUCEand CONSUME
instructions to send and receive values using the queue. These
instructions, which stall only when the queue is full or empty
as appropriate, are the only necessary extensions to the ISA.

DSWP transforms a loop into a sequence of threads, form-

(a) Main, producer thread (b) Consumer thread

Fig. 5. Two thread partitioning. The main thread is also the producer.

ing a pipeline of threads wherein each thread acts as a pipe-
stage performing part of the computation of the original loop.
The new threads execute concurrently and are long running,
each generally consisting of some loop or loop nest. Forming a
pipeline requires that dependences only flow unidirectionally
among the set of threads. To ensure this flow, the compiler
first identifies the strongly connected components (SCCs)
in the dependence graph, as illustrated by the rectangles in
Figure 4(a). After this, DSWP uses a load-balancing heuristic
to decide where to partition the dependence graph. In the
example of Figure 4(a), the instructions outside the shaded
rectangle are assigned to the first or main thread (also running
the rest of the program), and the instructions inside this
rectangle are assigned to the second thread. The arcs that
cross the boundaries of this rectangle correspond to values
that need to be communicated between the threads. This
communication is implemented by passing values through the
synchronization array. In order to allow control dependences
to be communicated (the unlabeled arcs fromB to C, D, and
E in the second thread), the branch instructionB is node split.
Node B in Figure 4(a) becomesB and B’ in Figure 4(b)).
This node splitting ensures that control dependences are
communicated as data dependences. Figure 5 illustrates the
resulting code for this partitioning, with the synchronization
instructions inserted. Note that inside the loops, the values
are only transmitted in one direction. This implies that the
communication latency is a one-time cost, not a recurrent
one. In addition, initialization (and finalization) instructions
are necessary before (and after) the loops, in order to pass
loop live-in (and live-out) values between the threads.

We have created a proof-of-concept implementation of
DSWP using the IMPACT compiler [1], targeting a dual-
core Itanium 2 model with the synchronization array. Our
simulator model was built using the Liberty Simulation En-
vironment [11], and each core has an accuracy to within
6% of the corresponding real hardware. Table I presents the
results of applying DSWP to a set of benchmarks (mostly
from the SPEC2000 benchmark suite). For each benchmark,
we chose the loop that corresponds to the largest share of the
total execution time (between 16% and 90%). The average
speedup obtained is 25%, with a range of 9-48%. The next
section presents several factors that can potentially improve
these results and lead to partitioning of more than two threads.



TABLE I

LOOP REPRESENTATION(IN % OF EXECUTION TIME) AND SPEEDUP.

Benchmark Representation Speedup % Dyn. Instr.
% Loop Overall Increase %

wc 90 47 40.4 12.2
epicdec 29 9 2.5 17.7
jpegenc 20 12 2.2 20.2
129.compress 16 10 1.5 23.8
179.art 21 24 4.2 78.5
181.mcf 35 48 12.8 64.9
183.equake 67 44 25.7 20.6
188.ammp 64 9 5.6 6.1
Average 42.8 25.4 11.9 30.5
Geo Mean 24.3 11.1 28.4
Standard Dev. 18.0 14.1 26.2

(a) Unroll producer,
split consumer

(b) Accumulator expan-
sion

Fig. 6. Dependence graphs for transformations to get more threads.

Table I also shows the increase in the number of dynamic
instructions for DSWP over the base.

IV. FUTURE WORK

The first avenue of future exploration is the use of a more
accurate memory analysis technique as discussed earlier, build-
ing on [4]. In addition, other optimizations (e.g. accumulator
expansion, induction variable expansion, and expression refor-
mulation) will be applied to reduce the dependences among
instructions, creating more SCCs. Optimizations to reduce
inter-thread communication bandwidth are also of interest.

While only two threads are extracted by the technique
as presented, additional threads can be obtained in several
ways. First, more stages can be created in the pipeline.
Second, DSWP exposes parallelism in the form of aDOALL
consumer. Figure 6(a) illustrates the dependence graph for

the code obtained by unrolling the original loop. The shaded
region in Figure 4(b) becomes two regions in Figure 6(a).
This could be split into two consumer threads if not for the
loop-carried dependences betweenG1 and G2, which add to
the accumulator registerr10 , preventing the transformation.
Accumulator expansion can remove this dependence by using
a different register in each thread and adding them at the
exit of the loop. The dependence graph after applying this
transformation is shown in Figure 6(b), and it can be used to
infer the resulting threads. This technique can also be used to
obtain an arbitrary number of consumer threads.

V. CONCLUSION

This paper explores the problem of extracting thread-level
parallelism from sequential programs for execution on modern
CMPs. We described the main challenges of this problem
and our approach to addressing them. The key insight in-
volves partitioning for easier-to-findpipeline parallelismat
the instruction-level, effectively exploited by theDecoupled
Software Pipeliningtechnique. Initial results show speedups
on average of 25% and as high as 48%, across important
benchmark loops. Future work involves increasing the scope
of compiler optimization, improving the accuracy of low-level
memory analysis, and applying ILP compiler techniques to
this new form of TLP partitioning.

REFERENCES

[1] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M.
Crozier, B. Cheng, P. R. Eaton, Q. B. Olaniran, and W. W. Hwu,
“Integrated predication and speculative execution in the IMPACT EPIC
architecture,” inProc. of Int’l. Symp. on Computer Architecture, 1998.

[2] R. D. Barnes, E. M. Nystrom, J. W. Sias, S. J. Patel, N. Navarro,
and W. W. Hwu, “Beating in-order stalls with ‘flea-flicker’ two-pass
pipelining,” in Proc. of the Int’l. Symp. on Microarchitecture, 2003.

[3] A. Bhowmik and M. Franklin, “A general compiler framework for
speculative multithreading,” inProceedings of the 14th ACM Symposium
on Parallel Algorithms and Architectures, 2002, pp. 99–108.

[4] B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D. I.
August, “Practical and accurate low-level pointer analysis,” inProc. of
the Int’l. Symp. on Code Generation and Optimization, 2005.

[5] W. W. Hwu and P. P. Chang, “Inline function expansion for compiling
realistic C programs,” inProc. of ACM Conf. on PLDI, 1989.

[6] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar, “Min-cut program
decomposition for thread-level speculation,” inProc. of ACM Conf. on
Programming Language Design and Implementation, 2004, pp. 59–70.

[7] K. Kennedy and J. R. Allen,Optimizing compilers for modern architec-
tures. Morgan Kaufmann Publishers Inc., 2002.

[8] D. Kim and D. Yeung, “A study of source-level compiler algorithms
for automatic construction of pre-execution code,”ACM Trans. Comput.
Syst., vol. 22, no. 3, pp. 326–379, 2004.

[9] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August, “De-
coupled software pipelining with the synchronization array,” inProc. of
Int’l. Conf. on Parallel Architectures and Compilation Techniques, 2004.

[10] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew, “The
superthreaded processor architecture,”IEEE Transactions on Computers,
vol. 48, no. 9, pp. 881–902, 1999.

[11] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I.
August, “Microarchitectural exploration with Liberty,” inProc. of Int’l.
Symp. on Microarchitecture, 2002, pp. 271–282.


