From Sequential Programs to Concurrent Threads

Guilherme Ottoni Ram Rangan Adam Stoler Matthew J. Bridges David I. August
Departments of Computer Science and Electrical Engineering
Princeton University

Abstract— Chip multiprocessors are of increasing importance replace the need for automatic, non-speculative thread extrac-
due to recent difficulties in achieving higher clock frequencies tion. Instead, they play an important, largely orthogonal role.
in uniprocessors, but their success depends on finding useful The goal of this work is to automatically thread ordinary
work for the processor cores. This paper addresses this challenge
by presenting a simple compiler approach that extracts non- C programs, mspwed by the above mentioned compiler a_nd
speculative thread-level parallelism from sequential codes. We computer architecture work and by successes of ILP-extraction
present initial results from this technique targeting a validated techniques. Three obstacles become apparent. Overcoming the
dual-core processor model, achieving speedups ranging from 9- primary obstacle involves embracing a type of parallelism that
48% with an average of 25% for important benchmark loops over is easier to find in sequential applicationspelined paral-

their single-thregded versions_. We also identify important next -

steps found during our pursuit of higher degrees of automatic lelism Doing so Implles relatively minor harc.jvv.are'changes,

threading. but allows leveraging of powerful ILP optimizations and
analyses to extract TLP. The two secondary obstacles involve
limitations in today’s compilers that we hope to address in the
future.

|. INTRODUCTION This paper describes these obstacles and our approach to

For years, a steadily growing clock speed has been religgninating them. We then describe a compiler technique,
upon to consistently deliver increased performance for P4ilt on an aggressive ILP compiler, that overcomes the
wide range of applications. Recently, however, this trend hBEMary obstacle by automatically extracting, without re-
changed, as the microprocessor industry can no longer increS@ging o speculation, long-running, concurrently-executing,
clock speed because of difficulties related to power coRiPelined threads from unmodified sequential C programs.
sumption, heat dissipation, and other factors. Meanwhile, tH& also briefly describe the hardware support necessary to
exponential growth in transistor count remains strong, causiﬁéeCUte these_ pipelined threads without costly syn_chrom_zatlon
major microprocessor companies to add value by produciﬂ&erhead' Using a dual-core processor_ r_nod.ell ywth validated
chips that incorporate multiple processors. While chip mulfprocessor cores, we demonstrate promising initial results.
processors (CMPs) increase throughput for multiprogrammed
and multi-threaded codes, they do not directly benefit the many [I. OBSTACLES TOTHREAD EXTRACTION
importar!t exisfcing single—thregded applica_tions. _ A. Type of Parallelism

Compiler writers have had little success in extracting thread-

level parallelism (TLP) from sequential programs. Good re- Significant untapped parallelism already exists in sequen-

sults have been obtained in a few restricted domains, mHQ{ applications. Due to complex control flow and irregular

noticeably in parallelizing scientific and numeric applicapomter—based memory accesses, this parallelism is not of the

tions [7]. Such techniques perform well on counted Iood‘g | Instead limitstudi how that | :
manipulating very regular, analyzable structures, consistiffgcc. NSt€ad, our fimit studies show that foops in sequen-
I fC/C++ codes generally have one or more cross-iteration

mostly of predictable array accesses. In many cases, set

completely independent loop iterations (DOALL) occur natdjepetpdence Ehams. I_For(;una;ely, ml SUChd cqfﬁs,tr;])arts Oi. each
rally or are easily exposed by loop traversal transformationsaton can be pipelined and overlapped with other sections

However, many programs have complex control flow, recursi ('1|ffoelr§nt”_|lt3e:atltr)1n.s. Th|$lpﬁllneIparallellslrlms oftzn ef)t(-
data structures, or general pointer accesses, rendering t ed by echniques such as loop unrofling and sottware

techniques unsuitable in general pipelining (but often with varied success in this domain due

Since automatic thread extraction has been difficult f(g? variable latencies). However, since these techniques do

compiler writers to achieve, computer architects have turnedgt extract threads, they cannot be directly applied to chip

speculative [3], [6], [10] and multiple-pass [8], [2] technique u[ggggesséotrs ' P:jpellnetljl pl).ar?'llehsrtr: tIS alsr(]) tex;r)]lolned with
to make use of additional hardware contexts. These technigue read paraiielization, but such techniques are

are promising, but generally require significant hardware su ot general enough to handle uncounted loops, contral fiow

port to handle recovery in the case of mis-speculation Pd irregular pointer-based memory accesses [7]. Additionally,

to affect the warming of microarchitectural structures. The N creating DOACROSS loops, the inter-core communication

approaches are also limited by the increasing mis-speculat hencr)i/ti IS llnsetr;edf Otﬂ thle recil:]rrtehnce r?]f thni lofoﬁ’] elr?nr%e;)ur:g
rates, penalties, and pollution encountered as they beco g crtcal paih of the loop € amount of the humbe

more aggressive. Even the best of these techniques do %oﬁeraﬂons muItlpI|e_d b_y the commu_mca_hon_ latency. The
technique presented in this paper exploits pipelined parallelism

Manuscript submitted: 3 May 2005. Manuscript accepted: 13 June 200Kithout _Su.Ch limitations. In _Part'CUIar' no communication
Final manuscript received: 20 June 2005. latency is inserted on loop critical paths.

— Ledf — Inner

a2 8'0 | ‘ ‘ ‘ ‘ Inner+1

T) 7.0 I P T Inner+2
) ---- All 8 0 Jr b
; 1 o 60 | 1
g c
: B ,% 50 1
% T 40 + 1
- = 30 - 1
3 | ©
T 8 20 1
; F oot ,]
- | " T e
) i 00 lussimetlpocempooey - ‘ ‘

‘ 10° 10? 104 108 10° 101
10° 102 10t 108 10° Average | nner Loop Iterations per Invocation

Average Inner Loop Iterations per Invocation

Fig. 2. For SPECINT 2000 programs, the trip-count for inner loops (“Inner”),
Fig. 1. For an aggressively inlined 186-crafty, the trip-count of loops visiblier some level of loop nest (“Inner+N”), and for all levels (“All") as a
within each function (“Leaf”); within each function and some number otumulative distribution function weighted by total inner-loop iteration count.
parents (“Leaf+N”); and across the whole program (“All") as a cumulative
distribution function weighted by total inner-loop iteration count.

assigning the innermost iterations to the loop that contains
the innermost loop greatly increases the Ipl. This is consistent
i A o o with our experience, which has shown that inner loops are not
Extracting pipeline parallelism involves the partitioning oyicient for optimization. As a result, the technique presented
loops in some fashion. Naturally, to be profitable, the l00R§ this paper is designed to handle arbitrary control flow,

partitioned must represent a significant portion of the totg{ciuding control flow created by nested loops.
execution time and must be long running (many iterations per

invocation) to overcome any one-time costs. Loops of thS. Memory Analysis

type generally exist in programs, but are not always visible to ity the goal of extracting ILP, researchers have produced
the compiler. Since traditional compilers use functions as thgceptional memory dependence analysis techniques. These
unit of optimization (though analysis may be inter-procedurallschnigues are sufficient to enable the successful extraction of
inlining is employed to increase the scope of optimization [S{hreads as described here. However, we observe two problems
Full inlining is not possible because inlining increases coqgat, if addressed, would produce better redulrst, since

size beyond acceptable limits and cycles may exist in the C@lb extract threads from low-level codes (for reasons described
graph. As a result, profitable loops may not be visible to thg the next section), memory analysis information must be
compiler for TLP extraction even after aggressive inlining. accyrate in the back-end of the compiler. Traditionally, com-

~ Consider Figure 1, which characterizes an aggressivejiers perform memory analysis in the front-end and propagate
inlined version of 186.crafty from SPECINT2000. For eacthjs information to the back-end. However, conservative prop-
inner loop in the benchmark, the iterations were assigned 4gation during optimizations degenerates the accuracy of this
the outermost loop(s) in the function. The outermost 100p(Rdsyit [4]. Second, since sequential codes often have recursive
was then categorized according to the number of iteratioggia structures, a shape analysis scalable to real codes would

per invocation (Ipl). Each line in the figure is a cumulativesq,ce false cross-iteration dependences.
distribution of the total number of inner loop iterations for all

outermost loops with Ipl at most the given x-axis value. The IIl. DECOUPLEDSOFTWARE PIPELINING
solid line labeled “Leaf” shows that, when restricting visilibity .

to leaf functions after aggressive inlining, roughly two-thirds . In_ our approach, we leverage prior S'.“'CC.eSSfUI ILP com-
of total program iterations occur within loops which iterat«r%:Iatlon research to address the compilation challenge of

less than 20 times per invocation. Generally, only loops wi ection II-A._We llustrate our approach using Fhe che of
an Ipl of at leasti0® are suitable for optimization. Thus Figure 3, which sums the elements of a linked list of linked

limiting the compiler’'s scope to a single function is unIikeI)JiSts of in;ggers. Frigure d“@ T:hows g‘i d?rign%ence dgraph
to yield much gain for optimizations with one-time costs. ThECresponding to the code in Figure (b). This dependence

remaining lines show that the situation improves if compilatiowaph accounts f_or all relevant d_ependences: _data, control,
scope were to include either 1, 2, or all calling functiong]trz_i"terat'on (S_O“d.)’ and Ioop-carrlgd (dashed !mes). .
when determining outermost loops. Not surprisingly, when the Like the loop in Flgurg 3, loops typically found in s.e'qugntlgl
outermost loop(s) is the main loop of the program, the I;ﬁOdeS are not DOALL in nature. [.)OACROS.S partltlonlng IS
is a significant fraction of the program runtime. To incread®ot profitable due to reasons mentioned earlier. Our technique,

program optimization scope, we are currently exploring a‘f‘?lled Decoupled_ Sqftware Pipc_elini_nngSWP), s a more
alternative to inlining which gives compilers whole-progra eneral form ofpipeline parallelizationthat overcomes the
scope without code growth drawbacks of DOACROSS parallelization (1) by working in

Just as Figure 1 shows that inlining is not enough, Figureﬂ%e presence of any kind of memory dependences; (2) by

shows that limiting partitioning to just inner loops, even whefxtracting more scalable paralielism; and (3) by reducing

ignoring function scoping, also leads to reduced optimizatiosr‘?nsmvIty to inter-thread communication latency (by keeping

opportunities. Roughly half of the innermost loops, Weighte'& out of the critical path). DSWP was first introduced as

by inner loop iteration (_:Ount' have t”P .coun.ts less than 100'1These problems manifest, for example eipicenc¢ our lowest performing
as shown by thdnner line. The remaining lines show thatbenchmark. The 9% gain becomes 45% without these problems.

B. Scope of Optimization

CONSUME r10 = [0]

CONSUME pl = 1]
B: brpl, EXITI’

CONSUME 12 = [2]

rlis live
rl0 s live
A: pl=rl==0

B: brpl, EXIT1

‘ ‘ rl0 is live ‘

PRODUCE [0] =r10

A: pl=rl==0
PRODUCE [1] = pl
B: brpl, EXITI

while (ptrl != NULL) { [C: 2 =Mir1+20]
ptr2 = ptrl->elems;
while (ptr2 != NULL) {
sum += ptr2->val;
ptr2 = ptr2->next;

C: 2= M[r1+20]
PRODUCE [2] =12

F: 13 = M[12430]
G: r10=r10+13
H: 2=M[12]

I jumpB3

J: rl =M[r1+10]
K: jump Bl

} F: 13 = M[r2+30]

ptrl = ptrl->next; G: rl0=r10+13 Jo rl=M[rl+10]
| H: 2= M2 K: jump B1
I: jump B3
(a) Main, producer thread (b) Consumer thread
(a) C source code (b) Intermediate representation

Fig. 5. Two thread partitioning. The main thread is also the producer.

Fig. 3. Sample code. Adds up the elements in a list of lists.

ing a pipeline of threads wherein each thread acts as a pipe-
stage performing part of the computation of the original loop.
The new threads execute concurrently and are long running,
each generally consisting of some loop or loop nest. Forming a
pipeline requires that dependences only flow unidirectionally
among the set of threads. To ensure this flow, the compiler
first identifies the strongly connected components (SCCs)
in the dependence graph, as illustrated by the rectangles in
Figure 4(a). After this, DSWP uses a load-balancing heuristic
to decide where to partition the dependence graph. In the
example of Figure 4(a), the instructions outside the shaded
rectangle are assigned to the first or main thread (also running
the rest of the program), and the instructions inside this
rectangle are assigned to the second thread. The arcs that
cross the boundaries of this rectangle correspond to values
that need to be communicated between the threads. This
communication is implemented by passing values through the
synchronization array. In order to allow control dependences
to be communicated (the unlabeled arcs frBnto C, D, and

rio

r2

Gpe E in the second thread), the branch instructidis node split.

10 Node B in Figure 4(a) becomeB and B’ in Figure 4(b)).
=110 This node splitting ensures that control dependences are
(a) Initial (b) Node-split B communicated as data dependences. Figure 5 illustrates the

resulting code for this partitioning, with the synchronization
Fig. 4. d_Depde;ieEg; gcrf:\)lir)]fsrso-I Sstgnggﬁcegge;zeﬁnggelﬁjbe:ﬁga"i\g'aitﬁg@tructions inserted. Note that inside the loops, the values
gggeerizggc:ansgare solid, and Ioop-carfied dependences are dashed. te Only_tra_nsm'tted In (_)ne dlrect|_on. This implies that the

communication latency is a one-time cost, not a recurrent

one. In addition, initialization (and finalization) instructions
a method to hide cache misses in the traversal of recursae necessary before (and after) the loops, in order to pass
data structures as illustrated in prior work using hand-modifiéaiop live-in (andlive-ouf values between the threads.
benchmarks [9]. Here, we establish DSWP as a more generale have created a proof-of-concept implementation of
thread parallelization technique and propose a systematic WaWP using the IMPACT compiler [1], targeting a dual-
to perform it in a compiler. core Itanium 2 model with the synchronization array. Our

In order to support the pipelined communication of valsimulator model was built using the Liberty Simulation En-
ues between threads, DWSP usessyachronization array vironment [11], and each core has an accuracy to within
to provide a conduit for communication and synchronizatiog® of the corresponding real hardware. Table | presents the
between the threads [9]. The synchronization array can fesults of applying DSWP to a set of benchmarks (mostly
a special register file that implements queue semantics fiem the SPEC2000 benchmark suite). For each benchmark,
tween cores. The threads execlRRODUCENd CONSUME we chose the loop that corresponds to the largest share of the
instructions to send and receive values using the queue. Thgel execution time (between 16% and 90%). The average
instructions, which stall only when the queue is full or emptgpeedup obtained is 25%, with a range of 9-48%. The next
as appropriate, are the only necessary extensions to the 1S#&ction presents several factors that can potentially improve
DSWP transforms a loop into a sequence of threads, forthese results and lead to partitioning of more than two threads.

Loor REPRESENTATIOI\(IN % OF EXECUTION TIME) AND SPEEDUPR

TABLE |

Benchmark Representation ~ Speedup % Dyn. Instr.
% Loop | Overall | Increase %
wC 90 47 40.4 12.2
epicdec 29 9 25 17.7
jpegenc 20 12 2.2 20.2
129.compress 16 10 15 23.8
179.art 21 24 4.2 78.5
181.mcf 35 48 12.8 64.9
183.equake 67 44 25.7 20.6
188.ammp 64 9 5.6 6.1
Average 42.8 25.4 11.9 30.5
Geo Mean 24.3 111 28.4
Standard Dev. 18.0 141 26.2

Fig. 6.

(&) Unroll

producer,

split consumer

Table | also shows the increase in the number of dynamic!
instructions for DSWP over the base.

The first avenue of future exploration is the use of a more

(b) Accumulator expan-
sion

IV. FUTURE WORK

Dependence graphs for transformations to get more threads.

the code obtained by unrolling the original loop. The shaded
region in Figure 4(b) becomes two regions in Figure 6(a).
This could be split into two consumer threads if not for the
loop-carried dependences betweem and G2, which add to

the accumulator registadO , preventing the transformation.
Accumulator expansion can remove this dependence by using
a different register in each thread and adding them at the
exit of the loop. The dependence graph after applying this
transformation is shown in Figure 6(b), and it can be used to
infer the resulting threads. This technique can also be used to
obtain an arbitrary number of consumer threads.

V. CONCLUSION

This paper explores the problem of extracting thread-level
parallelism from sequential programs for execution on modern
CMPs. We described the main challenges of this problem
and our approach to addressing them. The key insight in-
volves partitioning for easier-to-fingipeline parallelismat
the instruction-level, effectively exploited by tHaecoupled
Software Pipeliningtechnique. Initial results show speedups
on average of 25% and as high as 48%, across important
benchmark loops. Future work involves increasing the scope
of compiler optimization, improving the accuracy of low-level
memory analysis, and applying ILP compiler techniques to
this new form of TLP partitioning.

REFERENCES

[1] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M.
Crozier, B. Cheng, P. R. Eaton, Q. B. Olaniran, and W. W. Hwu,
“Integrated predication and speculative execution in the IMPACT EPIC
architecture,” inProc. of Int'l. Symp. on Computer Architecturg998.

[2] R. D. Barnes, E. M. Nystrom, J. W. Sias, S. J. Patel, N. Navarro,
and W. W. Hwu, “Beating in-order stalls with ‘flea-flicker’ two-pass
pipelining,” in Proc. of the Int'l. Symp. on Microarchitectyr@003.

[3] A. Bhowmik and M. Franklin, “A general compiler framework for
speculative multithreading,” iRroceedings of the 14th ACM Symposium
on Parallel Algorithms and Architecture002, pp. 99-108.

[4] B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D. I.
August, “Practical and accurate low-level pointer analysis,Pinc. of
the Int'l. Symp. on Code Generation and Optimizatiaf05.

[5] W. W. Hwu and P. P. Chang, “Inline function expansion for compiling
realistic C programs,” ifProc. of ACM Conf. on PLDI1989.

[6] T. A.Johnson, R. Eigenmann, and T. N. Vijaykumar, “Min-cut program

decomposition for thread-level speculation,”fnoc. of ACM Conf. on

Programming Language Design and Implementati®@04, pp. 59-70.

K. Kennedy and J. R. AllenQptimizing compilers for modern architec-

tures Morgan Kaufmann Publishers Inc., 2002.

[8] D. Kim and D. Yeung, “A study of source-level compiler algorithms
for automatic construction of pre-execution cod®CM Trans. Comput.
Syst, vol. 22, no. 3, pp. 326-379, 2004.

[9] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August, “De-

coupled software pipelining with the synchronization array,Pioc. of

Int’l. Conf. on Parallel Architectures and Compilation Techniqu2@04.

accurate memory analysis technique as discussed earlier, bng]-
ing on [4]. In addition, other optimizations (e.g. accumulator
expansion, induction variable expansion, and expression refor-
mulation) will be applied to reduce the dependences amoHé]
instructions, creating more SCCs. Optimizations to reduce
inter-thread communication bandwidth are also of interest.
While only two threads are extracted by the technique
as presented, additional threads can be obtained in several
ways. First, more stages can be created in the pipeline.
Second, DSWP exposes parallelism in the form @@ALL
consumer Figure 6(a) illustrates the dependence graph for

J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew, “The
superthreaded processor architectuZE Transactions on Computers
vol. 48, no. 9, pp. 881-902, 1999.

M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I.
August, “Microarchitectural exploration with Liberty,” iRroc. of Int'l.
Symp. on Microarchitecture2002, pp. 271-282.

