
Architectural Support
for Containment-based Security

Hansen Zhang∗
Princeton University

Soumyadeep Ghosh∗†
Princeton University

Jordan Fix‡
Princeton University

Sotiris Apostolakis
Princeton University

Stephen R. Beard
Princeton University

Nayana P. Nagendra
Princeton University

Taewook Oh‡
Princeton University

David I. August
Princeton University

Abstract
Software security techniques rely on correct execution by
the hardware. Securing hardware components has been chal-
lenging due to their complexity and the proportionate attack
surface they present during their design, manufacture, de-
ployment, and operation. Recognizing that external commu-
nication represents one of the greatest threats to a system’s
security, this paper introduces the TrustGuard containment
architecture. TrustGuard contains malicious and erroneous
behavior using a relatively simple and pluggable gatekeeping
hardware component called the Sentry. The Sentry bridges a
physical gap between the untrusted system and its external
interfaces. TrustGuard allows only communication that re-
sults from the correct execution of trusted software, thereby
preventing the ill effects of actions by malicious hardware or
software from leaving the system. The simplicity and plug-
gability of the Sentry, which is implemented in less than
half the lines of code of a simple in-order processor, enables
additional measures to secure this root of trust, including for-
mal verification, supervised manufacture, and supply chain
diversification with less than a 15% impact on performance.

CCS Concepts • Security and privacy→Hardware se-
curity implementation.

Keywords hardware security, containment, pluggable
∗These authors contributed equally to this research.
†Work done at Princeton University. At Barefoot Networks at time of
publication.
‡Work done at Princeton University. At Facebook at time of publication.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304020

ACM Reference Format:
Hansen Zhang, Soumyadeep Ghosh, Jordan Fix, Sotiris Apostolakis,
Stephen R. Beard, Nayana P. Nagendra, Taewook Oh, and David I.
August. 2019. Architectural Support for Containment-based Secu-
rity. In 2019 Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’19), April 13–17, 2019, Providence, RI,
USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3297858.3304020

1 Introduction
Users may believe their systems are secure if they run only
trusted software; however, trusted software is only as trust-
worthy as the underlying hardware. Even if users run only
trusted software, attackers can gain unauthorized access to
sensitive data by exploiting hardware errors or by using
backdoors inserted at any point during design, manufac-
ture, or deployment [12, 24, 39, 97, 98, 103]. For example,
Biham et al. have demonstrated a devastating attack on the
RSA cryptosystem that builds on a multiplication bug that
computes the wrong product for only a single pair of 64-bit
integers [17]. An attacker can use knowledge of this pair
to break any key used in any RSA-based software running
on any device whose processor has this bug using a single
chosen message [17, 79].
Due to the complexity of designing and manufacturing

hardware, architects and manufacturers have limited confi-
dence that their systems have not been alteredmaliciously [20,
45, 52]. This confidence is further undermined by the fact
that building a computer system often involves different
parties across several important stages, from the initial spec-
ification all the way to fabrication. For example, manufac-
turing may be outsourced for economic reasons to com-
panies operating under the jurisdiction of foreign govern-
ments [12]. Additionally, many hardware components may
include intellectual property restrictions that prevent con-
cerned parties from ensuring their correctness and security.
Although prior techniques attempt to ensure hardware in-
tegrity during design, manufacture, and deployment, they
either do not protect against attacks in all of these stages
or are limited in the types of hardware components cov-
ered [2, 20, 23, 40, 44, 45, 54, 65, 66, 76, 77, 106].
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Given the difficulty in securing hardware, solutions that
protect complex computing systems using a single secure
hardware component are attractive. A promising class of
techniques uses this approach to secure systems by trusting
only the processor [25, 86]. Unfortunately, the only proces-
sors that have been secured with formal methods are simple
and low performance [20, 58, 64, 83]. Generally, processor
designers have focused on performance over security. For
example, aggressive optimizations (e.g., out-of-order execu-
tion) improve processor performance at the cost of design
complexity. The complexity of processors with reasonable
performance makes their verification far beyond the capa-
bilities of state-of-the-art formal methods [45, 52, 68, 93].
Further, backdoor detection does not scale to complex hard-
ware components such as processors with reasonable per-
formance [1, 39, 44, 84, 89, 97–99, 109, 110]. Thus, securing
a system using a single secure hardware component means
securing a system with a single simple hardware component.
Single simple hardware components have successfully

provided systems with limited security guarantees. For ex-
ample, the Trusted Platform Module (TPM) provides secure
cryptographic functions and hardware authentication (e.g.,
a processor manufactured by a known supplier) [37, 48, 92].
Thus, while TPM can serve as the root of trust, it relies on the
assumption that a verified identity is sufficient for security.
However, as described above, authenticated provenance of a
hardware component does not ensure that it is secure.
This paper introduces a method to provide a stronger

set of security guarantees for a complex system with only
a single simple hardware component. This method builds
on three key insights. First, checking that a computation is
correct can be much simpler than performing the computa-
tion. Second, irreparable harm generally involves maliciously
or erroneously constructed external communication. Third,
checking the correctness of external communication is more
practical than checking all state changes within the system.
This paper presents TrustGuard, a proof-of-concept ar-

chitecture that enables the detection and containment of
malicious behavior by untrusted components before results
are externally visible. At the core of TrustGuard is the Sentry,
a single simple component dedicated to security. The Sen-
try’s simplicity and open design make it amenable to formal
verification and allow it to serve as the basis of trust used to
secure a system. In TrustGuard, the Sentry is the only path
between the system and its external interfaces. Untrusted
components must prove to the Sentry that any data sent
externally is the result of correct execution of trusted and
signed software.1 This allows the Sentry to containmalicious
behavior by untrusted hardware and software. While con-
tainment does not provide availability guarantees, it assures
users that all output is only the result of verified execution.
1The correctness of signed software is orthogonal to the problem addressed
by this paper. Extensions of this work can help secure software (§9).

The feasibility of containment-based security depends
upon the simplicity of the trusted components and its im-
pact on system performance. While the form of containment
may change for different types of architectures, this work es-
tablishes the feasibility of containment-based security with a
TrustGuard prototype protecting a system with a single-core
processor. The key insight is that the untrusted processor
and memory can do almost all of the work, including acting
as control for the Sentry, and hold almost all of the state
without compromising any containment guarantees.

The Sentry cannot independently execute programs. In-
stead, it relies on information sent by the processor to check
program execution. Thus, the Sentry avoids much of the com-
plexity of aggressive processor optimizations. The Sentry
detects any erroneous or malicious behavior by untrusted
components without trusting any information sent by the
processor. TrustGuard checks the execution information sent
by the processor using a combination of functional unit
re-execution (§5.1) and a cryptographic memory integrity
scheme (§5.3). The functional unit re-execution is similar to
DIVA [9], which adds a checker pipeline stage to the proces-
sor to provide reliability guarantees (§3).

The execution information sent by the processor removes
dependences between instructions and allows the Sentry to
efficiently check the correctness of instructions in parallel
(§5.2). In fact, doing so enables the Sentry to offer contain-
ment while operating at clock frequencies much lower than
the frequency of the untrusted processor with minimal im-
pact to system performance.

In summary, the contributions of this paper are:

• The containment model, a model in which a single sim-
ple, trusted hardware element, the Sentry, quarantines
the malicious effects of untrusted components;

• TrustGuard, a proof-of-concept design (§5) that shows
the viability of the Sentry in terms of performance
(§7.1), energy (§7.4), and design complexity (§8); and

• A characterization of the threat model and security
assurances provided by TrustGuard (§2 and §6).

2 Motivation
Today, users must take on faith that their hardware and
software providers have built a system that will not betray
them to malicious parties. While significant research has
focused on securing the software stack, all such techniques
rely on correct execution by the hardware. This means that
hardware threats, found both in theory and in practice, can
bypass any software security guarantees. Thus, a system is
only as trustworthy as the underlying hardware.

2.1 Hardware Threats
One class of hardware threats come from malicious hard-
ware backdoors inserted into the processor during design



or fabrication stages. The Illinois Malicious Processors con-
tain shadow circuitry inserted at the design phase to enable
privilege escalation, backdoor login, and password theft [47].
Becker et al. demonstrated how a hardware Trojan inserted
during manufacture could compromise Intel’s cryptographi-
cally secure Random Number Generator [15].

The problem does not end with malicious hardware modi-
fication. Inadvertent bugs within hardware components like
functional units, coprocessors, memory, or on-chip networks
also pose security threats to the system. For example, as
stated in §1, a correctness bug can be exploited to weaken
encryption and lead to leakage of sensitive data [17].

Memory-related bugs are also a threat. Kim et al. showed,
in an attack called Rowhammer, that repeated accesses to
an address can cause data corruption in nearby addresses in
DRAM modules from three major manufacturers [46]. After
the discovery of Rowhammer, Google’s Project Zero team
developed two proof-of-concept exploits of this vulnerabil-
ity [78]. These exploits achieved privilege escalation and
underlined the security implications of such hardware bugs.

There are also threats that exploit performance-enhancing
features in the processor. For example, Meltdown [57] and
Spectre [50] extract information across protection bound-
aries.

TrustGuard focuses on preventing any harmful effects of
incorrect output in the face of all hardware threats men-
tioned above (§6). In general, TrustGuard can protect against
incorrect program output caused by hardware Trojans, bugs,
and other hardware security vulnerabilities (known and not-
yet-known). The Sentry even detects the results of internal
side-channel exploits, such as Meltdown and Spectre, if and
when they influence the output of the system.

2.2 Threat Model
TrustGuard ensures that all output from the system is only
the result of correctly executed signed software. The Sentry
allows only such output to pass while blocking all other
output. Thus, the output of non-signed software, such as
malware, is not permitted to pass through the Sentry. The
Sentry also prevents any errors in the execution of signed
software caused by malicious interference or system errors
from leaving the system.

TrustGuard does not provide any guarantees about avail-
ability or internal correctness of a system. Rather than pre-
venting hardware and software from maliciously or incor-
rectly altering the computation of results, TrustGuard instead
prevents any such interference from escaping the system via
explicit external communication. TrustGuard considers all
hardware components in the system other than the Sentry–
including processor, memory, and peripherals–as untrusted
and vulnerable to compromise.

TrustGuard does not protect against communication chan-
nels out of the system other than through the Sentry. Trust-
Guard does not protect against information leaked through

the Sentry via covert channels or side channels (e.g., encod-
ing of sensitive information in an energy usage pattern, long
duration timing encodings, implicit information leaked by
failures). Moreover, malicious adversaries are assumed not
to have physical access to the Sentry nor the physical gap.

TrustGuard does not give any guarantees about vulnerabil-
ities (or a lack thereof) in the signed software itself. The Sen-
try ensures that all output from the system is only the result
of correctly executed signed software. The Sentry prevents
results from the execution of unsigned software, including
malicious interference with signed software, from being com-
municated externally. (See §9 for further discussion about
extending this work to cover software vulnerabilities.)

3 Background
This section introduces various existing proposals, each of
which possesses some desirable properties for providing a
basis of trust in a complex system.

Redundant Execution for Security and Reliability.
One traditional approach to building trustworthy systems
from untrustworthy components employs redundant execu-
tion [11, 14]. In this approach, several untrustworthy com-
ponents redundantly perform computation, and the system
uses majority voting to detect erroneous behavior. Design
diversity of redundant components makes a hardware bug
or backdoor escaping detection less likely. However, the cost
of creating such a system is quite high, making it attractive
only for high-assurance and high-security systems, such as
aircraft and military systems.

The redundant execution approach has also been used to
build systems resilient to transient faults [6–10, 26, 36, 60, 62,
69, 70, 74, 81, 82, 87, 100, 102, 104, 112, 114]. DIVA [9] showed
that it is possible to build a simple, redundant checker to
detect errors in a processor’s functional units and its com-
munication channels with the register file and data cache.
While the introduction of a simple checker presents a

promising approach, DIVA was not designed for and is not
trivially extended to security. Architecturally, DIVA’s checker
is embedded in the processor’s commit path, and thus both
the checker and processor must be manufactured jointly.
This makes the checker vulnerable to malicious changes dur-
ing the processor’s manufacturing. DIVA also relies on the
processor to correctly communicate trace information to the
checker. Consequently, the checker cannot tell if the instruc-
tion execution stream it receives is modified, for example by
insertion or modification of instructions.
Additionally, DIVA does not provide any protections for

memory and register files. It instead relies on ECC to detect
any transient faults that may occur in these modules. This
is obviously insufficient for security. Finally, simply moving
DIVA off-chip is not a straightforward process, as there are
many issues to consider, including the potentially high off-
chip bandwidth required between the processor and checker.



Trusted Hardware Elements. One approach for build-
ing trustworthy systems is to incorporate a hardware mon-
itoring element that acts as the foundation of trust upon
which the security of the system is based. For example, in-
struction granularity monitoring co-processors such as Flex-
Core [33, 43], Raksha [32], and log-based lifeguards [27–29]
utilize additional hardware to monitor software execution
and detect software vulnerabilities. All these techniques ei-
ther trust that the processor configured the monitoring hard-
ware correctly or trust that the information flow through the
hardware is correct. Thus, these techniques are all vulnerable
to the effects of any backdoors introduced into the processor
during manufacturing.
Many researchers have also proposed designs for secure

processors as the basis of trust for the system [25, 30, 31, 56,
73, 85]. These works prevent attacks by relying on features
provided by the secure processor. While securing processors
is indeed easier than securing all hardware in the system,
modern processor designs are too complex to be reliably
verified [20, 52, 58]. Adding security features to processors,
such as SGX [59] and TrustZone [4], increases their design
complexity and makes them even more difficult to verify. Ad-
ditionally, these solutions do not address malicious modifica-
tions made to these secure processors during manufacture.

Chip Integrity Verification.Hardware backdoors, often
referred to as hardware Trojans, can be inserted at any phase
of the chip manufacturing process—specification, register-
transfer level (RTL) design, IP integration, physical design,
and fabrication. Various defenses have been proposed against
hardware Trojans including post-fabrication detection [1, 12,
21, 44, 51, 105, 107], run-time monitoring [98], and design-
time deterrence [22, 41, 75, 84, 99, 110]. However, these tech-
niques are typically not comprehensive. For instance, post-
fabrication detection techniques that rely on logic testing
cannot detect backdoors designed to stay dormant during
post-fabrication testing [89, 98]. Furthermore, some of these
techniques may also have a high runtime cost [98].

An alternate approach, called verifiable outsourcing, veri-
fies the correct execution of an untrusted hardware compo-
nent by using a trusted processor or ASIC as the verifier [94,
95]. However, this approach incurs a large performance over-
head and has limited applicability. More generic protocols
apply to a broader class of applications but have an even
larger performance overhead (105×–107×) [16, 19, 63, 96].

4 The TrustGuard Approach
The goal of TrustGuard is to serve as a foundation of trust
upon which trustworthy systems can be built by assuring
users that all communication is verified before leaving the
system. As shown in Figure 1, TrustGuard consists of an
untrusted system isolated from its external interfaces by a
Sentry spanning an otherwise physical gap. Thus, all exter-
nal communication must pass through this Sentry, which
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Figure 1. The TrustGuard Approach

verifies that all output from the system is the result of cor-
rect execution of signed programs. TrustGuard defines the
correctness of output with respect to the instruction set ar-
chitecture (ISA). By preventing the external communication
of incorrect results or results of unsigned programs, Trust-
Guard contains within the system the effects of faulty or
malicious components.

As checking results of processor execution is simpler than
performing full processor execution (§8), a simple Sentry
can keep up with a much faster, superscalar processor (§7).
This model offers a higher performance alternative to us-
ing currently available formally verified processors [58, 83],
which have simple, in-order pipelines and cannot provide
performance comparable to superscalar processors. More-
over, security processors that have superscalar performance
are too complex for formal verification [30, 56, 73, 85]. In
TrustGuard, only the Sentry needs to be verified and secured;
the complexity of the processor does not affect the security
assurances given by TrustGuard.

5 The TrustGuard Architecture
Figure 2 shows a high-level, proof-of-concept design of the
TrustGuard architecture. To allow output only from the cor-
rect execution of signed software, the Sentry in TrustGuard
checks (1) correctness of instruction execution with respect
to the ISA (including determining the next instruction in
program order); and (2) that each instruction is part of a
signed program. Policy dictates what to do upon detection
of incorrect execution. TrustGuard supports many differ-
ent incorrect execution policies including: halting execution;
continuing execution while preventing erroneous output;
alerting the user; and reporting the incorrect instruction.
This proof-of-concept supports a system with a single-core
processor running software, including an OS, signed by a
trusted authority. Additionally, TrustGuard requires that all
I/O originates from explicit I/O instructions.

5.1 Checking Instruction Correctness
Most of a modern processor’s complexity resides in compo-
nents that support aggressive optimizations, such as branch
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prediction, memory dependence speculation, and out-of-
order execution. These aggressive optimizations do not per-
form essential computation. Instead, they merely prepare
instructions and data for computation as early as possible.
The Sentry’s operation more closely resembles functional
unit execution than the processor’s full instruction pipeline.
In TrustGuard, the untrusted processor and memory do al-
most all of the work, including acting as control for the
Sentry, and hold almost all of the state without compro-
mising the Sentry’s containment guarantees. To accomplish
this, the untrusted processor is required to send information
about committed state changes to the Sentry. This includes
the results of all committing instructions. Sending informa-
tion about committing state obviates the need to check the
speculative work done by the processor.
Additionally, the sent execution information allows the

Sentry to efficiently check the correctness of instruction ex-
ecution with respect to the ISA. The method by which the
Sentry checks correctness of instruction execution depends
on the type of the instruction. For non-memory instruc-
tions, the Sentry uses its functional units to re-execute the
operation specified by the instruction using the execution in-
formation provided by the processor. We call this functional
unit re-execution. For memory instructions, however, func-
tional unit re-execution would be quite expensive due to the
cost of replicating the memory subsystem entirely. Instead,
TrustGuard relies upon a cryptographic memory integrity
scheme to transform memory operations into computations
that can be easily checked (§5.3).
To ensure that the processor does not misreport execu-

tion information, the Sentry maintains a shadow register file,
containing all architectural register state produced by the
verified instruction sequence. Note that the Sentry’s regis-
ter file need only maintain reference values for the set of
architectural registers. This set of architectural registers is
typically much smaller than the set of physical registers used

in an out-of-order processor [38]. The Sentry cannot execute
programs independently but can verify the correctness of
the received program execution information.

5.2 Redundant Instruction Checking Unit
The Redundant Instruction Checking Unit (RICU) is part
of the Sentry, shown in Figure 2. The RICU performs func-
tional unit re-execution of arithmetic, logic, and control in-
structions. The checking process itself is composed of three
stages: (1) Operand Routing (OR), which retrieves the next in-
struction result to be checked from the ExecInfo buffer and
determines the operands to be used for re-execution of that
instruction; (2) Value Generation (VG), which re-executes the
instructions using the Sentry’s own functional units; and (3)
Checking (CH), which compares the results to determine if
the processor reported the correct value.
One cannot assume that trusted fabrication plants can

produce chips using state-of-the-art fabrication technology.
Thus, the Sentry is designed to be manufactured with older
and slower technology while minimizing the performance
impact on processors manufactured with the latest tech-
nology. The RICU in the Sentry supports this by checking
multiple instructions in parallel regardless of dependences
among those instructions. The Sentry breaks dependences
by speculating that the processor executes instructions cor-
rectly, using unchecked values from the untrusted processor
to check dependent instructions without delay. Misspecula-
tion occurs when the untrusted system delivers malicious or
erroneous results to the Sentry. Misspeculation is detected
by the CH stage before the communication of those results
are sent to the external interfaces (§5.5).
Figure 3 highlights the performance impact of the Sen-

try’s parallel checking on the code in Figure 3(a) and its
dependence graph in Figure 3(b). Figure 3(d) shows the Sen-
try’s checking schedule with speculation-enabled parallel



1  :  r1 = r1 & 0xFF
2  :  r1 = r1 | (r1 << 0x8)
3  :  r1 = r1 | (r1 << 0x10)
4  :  r12 = r1
5  :  r2 = r2 - 0x8
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              1      2      3      4      5      6      7      8      9  
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              1       2       3       4       5       6       7     
Inst.1   ORA   VGA   CHA

Inst.2   ORB   VGB   CHB

Inst.3            ORA   VGA   CHA

Inst.4            ORB   VGB   CHB

Inst.5                     ORA   VGA   CHA

Inst.6                     ORB   VGB   CHB

Inst.7                              ORA   VGA   CHA

Inst.8                              ORB   VGB   CHB

Inst.9                                       ORA   VGA   CHA

Inst.10                                     ORB   VGB   CHB

(d)

Figure 3. Example of speculation enabled parallel checking for a 2-wide Sentry: (a) Trace example from 456.hmmer; (b)
Dependences between instructions in the trace; (c) Checking schedule with dependences respected; and (d) Checking schedule
for speculation enabled parallel checking.

checking, a significant improvement over the schedule with
dependences respected shown in Figure 3(c).

5.3 Memory Checking
TrustGuard checks the correctness of memory values ac-
cessed by untrusted system components using a memory
integrity scheme based on Message Authentication Codes
(MACs). Doing so allows TrustGuard to transform memory
operations into computations that can be easily checked. To
reduce complexity, the Sentry does not interface with a mem-
ory controller. Instead, the untrusted processor performs all
memory accesses (including accesses to MACs and other
metadata) and forwards data to and from the Sentry.

Bonsai Merkle Tree. Prior work in memory integrity
assumes a secure processor that faithfully performs the cryp-
tographic functions to ensure integrity [72, 85]. In Trust-
Guard, however, the sensitive cryptographic functions must
be performed by the Sentry, as it is the only trusted compo-
nent. With every cache line, TrustGuard associates a MAC—a
keyed cryptographic hash of the address of the cache line,
the data itself, and counters that maintain the version of the
cache line. Additionally, TrustGuard builds a Bonsai Merkle
Tree [72] on the counter blocks to protect the integrity of
the counters, thereby preventing replay attacks. The root of
the Merkle tree is stored in a special register in the Sentry.
Figure 4 shows the structure of the Bonsai Merkle tree used
by TrustGuard. We collectively refer to the metadata needed
to verify integrity (i.e., MACs, counters, and intermediate
Merkle tree nodes) as shadow memory.

Instead of using a single counter per data cache line, Trust-
Guard uses a split counter [108]. The counter is split into
two, with one smaller minor counter per-cache line, and a
larger major counter that is shared by a group of cache lines.
Cache lines are divided into 2KB groups. The overflow of a
minor counter requires incrementing the major counter and
re-MACing of all the cache lines in the group. If the group
counter overflows, the entire memory must be re-MACed
with a different key. In TrustGuard, the minor counters are
14 bits long, and the major counters are 64 bits long. This
configuration achieves a balance between counter size and

C1 C32Group C1

IM1 IM2 IM3 IM4  

Root (128 bits)

MAC32

 

Data32

MAC1

Data1

C97 C128Group C4  

MAC97

Data97

IMi : Level k intermediate Merkle tree node (128 bits) 
Ci : Per-block counter (14 bits)
Group Cj : Group counter (64 bits)
MACi (128 bits)= HMACk (Datai,addri,Ci)

Merkle tree
for counters

  1 1 1 1

k

Figure 4. Bonsai Merkle Tree [72] used by TrustGuard to
protect memory integrity.

the number of re-MACing operations; it also means that a
group of 32 minor counters and their major counter fit in a
single 64-byte cache line.

Cache Mirroring. While the use of the Bonsai Merkle
tree adds protection against replay attacks, it also massively
increases the number of memory accesses required to verify
memory integrity as well as the bandwidth needed between
the processor and the Sentry. To reduce the number of mem-
ory accesses, TrustGuard uses a cache mirroring technique.2

In cache mirroring, the processor and the Sentry have L1
data and instruction caches of the same configuration.3 The
untrusted processor forwards all fill and eviction information
for its L1 caches to the Sentry. This allows the processor to act
as an oracle prefetcher for the Sentry, ensuring that memory
values are always available in the Sentry when needed. The
processor is responsible for the fill, replacement, timing, and
coordination with the rest of the memory subsystem. The
Sentry merely checks that the processor’s actions are correct
and uses the cache as its local store.
In addition to program data and instructions, the Sentry

requires the processor to send it the shadow memory needed
to verify an incoming cache line’s integrity. When the pro-
cessor fetches a new line into its L1 cache, it also fetches any
shadow memory not currently present in the cache for that
line and forwards them to the Sentry. Many of the counters
2Other cache configurations are possible, mirroring was selected for both
its effectiveness and its simplicity in implementation.
3The Sentry only has L1 caches, regardless of other levels in the processor.



and MACs in the Merkle tree nodes are likely already avail-
able in the processor’s (and therefore also the Sentry’s) L1
caches due to memory locality and adjacent placement of
counters and MACs. These effects further reduce the com-
munication bandwidth between the processor and Sentry.

Cache Checking Unit (CCU). Since the cache in the
Sentry is trusted, each access to the Sentry’s cache does not
need to be verified by cryptographic operations, work which
would dramatically reduce the performance of the system.
Instead, only cache line insertion and eviction require cryp-
tographic operations.
The CCU validates the integrity of inserted cache lines.

Upon receiving new data or instruction cache lines from
the processor, the Sentry speculatively stores the new cache
line in the data or instruction cache marked as unchecked,
allowing for the RICU to proceed with instruction checking
without waiting for integrity to be verified. The Pending
Output Buffer (§5.5) holds all subsequent output instructions
until this speculative assumption is confirmed correct.

Next, the CCU re-computes the MACs for the cache lines
using the data received and the counter values that were ei-
ther already cached or received. It then checks the calculated
MAC against the one reported by the processor. Similarly, if
the delivered cache line contains counters, the Sentry must
also check the MACs of the counters (IM1i nodes in Figure 4),
as well as all the intermediate Merkle tree nodes toward the
root until a cached ancestor is found or the root node stored
on the Sentry is reached. Once verification is complete, a
confirmation signal is sent to the Pending Output Buffer
(§ 5.5) to alert speculative output operations that they are
no longer dependent on this instance of speculation.
The CCU updates the shadow memory state for evicted

cache lines. Whenever a dirty data cache line is evicted from
the Sentry’s cache, the CCU increments counters, creates
new MACs, and sends this new shadow memory state to the
processor to be stored back to memory.

5.4 Link Compression
To reduce the communication between the processor and
the Sentry, TrustGuard uses a hybrid of Significance-Width
Compression (SWC) and Frequent Value Encoding (FVE) [90].
As the compression and decompression do not need to be
trusted, it adds no complexity to the trusted logic of the
Sentry.

5.5 Discussion of Other Issues
Program Loading The TrustGuard architecture requires
programs to be signed by a trusted authority to communi-
cate externally. To ensure the correct execution of signed
programs, the Sentry contains a trusted program loader, sim-
ilar to systems in previous software integrity work [34, 49].
Upon creating the Sentry, the manufacturer will generate
the Sentry’s secret key and the Merkle Tree metadata for
the trusted program loader. The root of this tree will then

be fused into a private static register on the Sentry. Upon
initialization, the Sentry will load this value into the Merkle
Tree root register to verify the trusted program loader. The
Sentry checks the trusted program loader. In turn, the trusted
program loader verifies the signatures of trusted programs as
it loads them and their metadata into memory before starting
their execution.

Interaction with Peripherals As shown in Figure 2, the
Sentry resides physically between the untrusted processor
and the peripherals. The Sentry prevents the results of un-
verified instructions from communicating to the peripherals
via the Pending Output Buffer (POB). In TrustGuard, all I/O is
the result of explicit I/O instruction execution. Only values
that have been verified as correct by the RICU are stored in
the POB. However, these checked output operations may be
dependent on a cache line that is in the process of having
its integrity checked, as described in §5.3. Therefore, the
POB confirms that all speculatively filled cache lines that the
output is dependent upon have been verified before allowing
the output to proceed to a peripheral. Direct memory access
(DMA) is compatible with containment-based security, but
DMA is not implemented in this proof-of-concept.

Changes to Processor Design The nature of the inter-
action between the untrusted processor and the Sentry in
TrustGuard requires several modifications to be made to the
design of the untrusted processor. The processor and the
Sentry must support the same ISA as TrustGuard defines
correctness of instructions with respect to the ISA specifica-
tions. They must also have the same number of architectural
registers. The untrusted processor must also support loading
and storing of MACs, counters, and Merkle tree nodes from
and to cache lines and memory. The processor additionally
must send a trace of its execution information (cache lines,
results, shadow memory accesses, and the processor’s condi-
tion flags) to the Sentry. This communication is synchronized
through the addition of two buffers to the processor’s design:
one ExecInfo buffer for the outgoing communication to the
Sentry, and the other for shadow memory values received
from the Sentry.

6 Attack Scenarios
To evaluate its containment capabilities, we modeled Trust-
Guard in the gem5 simulator [18] and implemented the fol-
lowing attack scenarios.

Incorrect Arithmetic Instruction Execution. These
attacks involve the untrusted processor manipulating an
arithmetic instruction’s execution. In particular, we imple-
mented the following cases: (1) Incorrect execution of arith-
metic instruction, e.g., the multiplier bug compromising
RSA [17]; (2) Modification of values in the register file. In
the example from Figure 5, if the untrusted processor ma-
nipulates the result of r1 = r2 * r1 to be any other value
than 0x6000, the Sentry’s Redundant Instruction Checking



Original Program

(r1 = 0x2000, r2= 0x0003, 
 r3 = 0x0012)

I1 : r1 = r2 * r1
I2 : Mem[r1] = r3
I3 : r3 = Mem[r1+4]
I4 : jmp r3

Processor Sentry

I1 I2 I3Inst line n

Fetch instruction
cache line n

MACn

 [MAC engine] Compute Hk(n,PC')
 [Verify]          Hk == MACn

[CCU] r1 = r2 * r1
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Write
 Miss
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Read
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Result = {0x6000}
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Cd GCc

[Update] Cache[0x6000] =0x012
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Cache lines used

][I4

jmp r3

[MAC engine] Compute HMAC(c)
[Verify]          HMAC == IMc

[RICU]  [Update]  PC'  = r3'

Read
Miss][

Figure 5. Example code checking by the Sentry. rx’ in the figure indicates the shadow register in the Sentry for the register
rx in the untrusted processor. Hk is the keyed cryptographic hash function used with key k .

Unit (RICU) detects the manipulation when it re-executes
the multiply operation. Similarly, the untrusted processor
could manipulate the instruction by changing the value of
an operand. However, this illegal change in the value of the
operand will not appear in the Sentry’s shadow register file.
Therefore, the result of the operation produced by the Sen-
try will differ from that reported by the processor and the
manipulation will be detected.

Insertion of Malicious Instructions. These attack sce-
narios involve the following cases: (1) insertion of non-
program instructions; (2) skipping execution of program
instructions; and (3) reordering instructions in the proces-
sor’s instruction stream incorrectly. Case (1) was described
by King et al. in the context of Illinois Malicious Processors
(IMP) [47]. All these cases were detected using the mecha-
nism described below using the example from Figure 5.
Assume that the untrusted processor inserts r2 = r2 +

0x1 just before r1 = r2 * r1 to maliciously increment the
value of r2 as part of an attack. The processor can choose
whether to send this instruction’s result or not to the Sentry.
If the processor sends the incorrect result (0x0004), the Sen-
try will re-execute the next instruction r1 = r2 * r1 and
detect a mismatch between the produced result (0x6000) and
the received result (0x0004). If the processor does not send
the instruction’s result, on the next instruction the proces-
sor will send its multiplication result (0x8000) to the Sentry,
and the attack will still be detected because it differs from
the Sentry’s result (0x6000). The Sentry detects incorrect
control flow by the processor in a similar fashion.

Modification of Values in Memory. In the example of
Figure 5, the processor (or some other malicious actor such
as a rogue program exploiting the Rowhammer bug) could
corrupt the data at Mem[0x2000] and change the value to
be values other than 0x0012. If the cache line containing
Mem[0x2000] is not in the Sentry’s cache, the processor will
send the cache line and the corresponding shadow memory
to the Sentry. However, the attacker is not able to generate
the correct shadow memory values, and the Sentry’s cache

checking unit (CCU)will detect this modification as it verifies
the integrity of the incoming cache lines against its shadow
memory.
If the cache line is in the Sentry’s cache, the processor

may continue executing using the wrong value it stored to
memory; however, the Sentry will execute the subsequent
instructions using the correct value recorded in its internal
state. Thus, any output depending on the corrupted memory
will be communicated correctly as long as the cache line is
present in the Sentry. Upon cache line eviction, the Sentry
will send a MAC of the cache line, assuming that the value
stored was 0x0012. The next time the line is loaded back
into memory, the Sentry’s CCU will discover the maliciously
executed store due to a mismatch in the MAC values. The
Sentry detects modification of instructions in a simi-
lar fashion.

Replay Attack Using Old Memory, Counter, and
MACs. Another attack could be attempted by replaying old
data, counter, and MACs already seen for a location in mem-
ory. However, upon cache line eviction, the counter is incre-
mented, and the MAC is regenerated using the new counter.
The Bonsai Merkle Tree scheme allows the Sentry to use its
internal state to verify the correctness of the counter. Replay-
ing old shadow memory values will result in a mismatch in
either the counters or the MACs and thus be detected by the
Sentry’s CCU.

7 Performance Analysis
For performance analysis, we modeled TrustGuard in the
gem5 simulator [18] using an out-of-order (OoO) ARM-based
untrusted processor. Table 1 shows the architectural parame-
ters used in the performance analysis. The default processor
frequency is 2GHz (common on current Intel and ARM pro-
cessors [3, 42]). The default bandwidth between the proces-
sor and the Sentry is 16GB/s (achievable using an intercon-
nect such as 16-lane PCIe). We simulated the execution of
all 8 SPECINT 2006 workloads that work with gem5, three



Feature Parameter
Architecture ARMv7 32-bit 2GHz Processor
Processor Commit Width 8 instructions/cycle
L1 I-Cache 4-way set associative,

64KB, 64B cache line
L1 D-Cache 4-way set associative,

64KB, 64B cache line
L2 Cache 16-way set associative,

16MB, 12 cycle hit latency
Off-chip latency 100 CPU cycles
Off-chip bandwidth 16 GB/s
MAC Function HMAC with MD5
Table 1. Architectural parameters for simulation

additional SPECFP benchmarks: 450.soplex, 453.povray, and
470.lbm, as well as cryptographic operations from OpenSSL
(AES & RSA encryption/decryption). For programs with
short execution times – 445.gobmk, 450.soplex, 462.libquan-
tum, and OpenSSL – we simulate whole programs. For all
other benchmarks, we sample five random simulation check-
points. For each checkpoint, benchmarks run in the simula-
tion for 25 million instructions to warm up the microarchitec-
tural state prior to a cycle-accurate simulation for 200 million
instructions to collect performance data. For each experi-
ment, the baseline is the out-of-order, superscalar processor-
based system without any TrustGuard modifications (OoO
only).

7.1 Performance of TrustGuard
Two factors impact the IPC of the untrusted processor in
TrustGuard. The first factor is the increased cache and mem-
ory pressure from additional Merkle tree accesses. On av-
erage, the benchmarks performed 31.3% more accesses to
memory. The second factor is the introduction of two new
kinds of stalls in the untrusted processor: (1) Slow Sentry
Stalls, due to the Sentry’s inability to check instructions as
fast as execution by the processor; and (2) Bandwidth Stalls,
where the Sentry is kept waiting for execution information
due to bandwidth limitations on the channel to the processor.
To demonstrate the performance implications of Trust-

Guard, we evaluated the effects of various design parameters,
such as the RICU width (Figure 6), frequency of the proces-
sor and the Sentry (Figure 8), and the bandwidth between
the processor and the Sentry (Figure 10), on the IPC of the
untrusted processor.

Sentry Parallelism. Figure 6 shows the effect of varying
the number of instructions checked in parallel by the Sentry
(RICU width) on the IPC of the untrusted processor. The
geomean decline in IPC for RICU widths of 2, 4, 6, and 8
was 41.6%, 16.8%, 15.4%, and 15.2% respectively. The higher
RICU width resulted in higher checking throughput on the
Sentry, leading to improved performance. This is borne out
by the decrease in the number of Slow Sentry Stalls as the
RICU width increases (Figure 7). The average percentage
of Slow Sentry Stalls experienced was 30.76%, 2.13%, 0.30%,
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and 0.05% respectively for RICU widths of 2, 4, 6, and 8. The
effect of increasing the RICU width was especially visible
for benchmarks with higher baseline IPCs. For example, for
456.hmmer, going from RICU width 2 to 4 reduced the per-
centage of Slow Sentry cycles from 49.29% to 9.12%.
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Processor/Sentry Clock Frequency. One of the main
insights behind TrustGuard is that a Sentry running at lower
clock frequency can verify the execution of instructions by
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the untrusted processor without impacting its performance
too adversely. Figure 8 shows the effect of varying the clock
frequency at which the processor and the Sentry operates.
The Sentry’s throughput increased at higher Sentry to pro-
cessor frequency ratio, leading to better performance. Com-
pared to the baseline, the 15 benchmarks showed a geomean
IPC reduction of 18.3% at 2GHz Processor & 500MHz Sentry,
15.2% at 2GHz / 1GHz, 30.2% at 4GHz / 1GHz, and 27.9% at
4GHz / 2GHz.

Figure 9 shows the number of bandwidth and slow Sen-
try stalls experienced by the processor while varying the
frequency of the processor and the Sentry. The average per-
centage of Slow Sentry Stalls reduced from 3.84% at 2GHz /
500MHz to 0.05% at 2GHz / 1GHz Sentry and from 3.28% at
4GHz / 1GHz Sentry to 0.04% at 4GHz / 2GHz.
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Figure 10. IPC while varying the bandwidth (Processor Fre-
quency=2GHz, RICU width=8, Sentry Frequency=1GHz).

Bandwidth. As shown in Figure 7 and Figure 9, the av-
erage percentage of bandwidth stalls remains quite stable
because the communication depends on program character-
istics. Figure 10 shows the effect of varying bandwidth on the
IPC of the untrusted processor, while Figure 11 presents the
percentage of Slow Sentry and Bandwidth Stalls incurred for
the resulting configurations. The geomean IPC decline was
27.9% at 8GB/s, 15.2% at 16GB/s and 14.2% at 32GB/s. The
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Figure 11. Stalls induced by the Sentry while varying the
bandwidth (same configuration as Figure 10). X-axis labels
indicate the bandwidth: 1=8GB/s, 2=16GB/s, 3=32GB/s.

corresponding average of the percentage of bandwidth stalls
was 17.36% at 8GB/s, 1.73% at 16GB/s, and 0.00% at 32GB/s.
With cache mirroring, the processor need not send cache
data to the Sentry on L1 cache hits. Therefore, programs
with greater cache locality will save on communication. For
example, at 16GB/s, 445.gobmk with an L1 data cache hit rate
of 83.5% incurred bandwidth stalls for 10.57% of execution
cycles. By contrast, 456.hmmer with 98.7% data cache hit
rate incurred bandwidth stalls for only 0.004% of execution
cycles.

7.2 Link Utilization
When the processor-Sentry link is 16GB/s, the geomean
bandwidth usage across the eleven benchmarks is 9.2GB/s.
The highest usage is in 445.gobmk (12.4GB/s) while the low-
est is in 471.omnetpp (4.84GB/s). As for instantaneous band-
widths (bandwidth used in a particular cycle), 445.gobmk
uses more than 12GB/s of instantaneous bandwidth for 75%
of execution cycles while benchmarks like 471.omnetpp and
458.sjeng use less than 4GB/s for more than 60% of execution
cycles.

7.3 Instruction Verification Latency
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Figure 12. Average latency between committing of an in-
struction in the processor and its checking by the Sentry
(Processor Frequency=2GHz, Bandwidth=16GB/s).



Output operations in TrustGuard cannot proceed until the
Sentry verifies them. Figure 12 shows the average latency for
each instruction from when untrusted processor commits
it to when the Sentry verifies it. This metric is the average
output operation delay. With increased Sentry parallelism
and frequency, the throughput of checking increases, which
results in a decline in the average latency. The geomean
average latency for each instruction is 155 processor cycles
(77.5ns) at 500MHz and RICU width 8, 137 processor cycles
(68.5ns) at 1GHz and RICU width 4, and 112 processor cycles
(56ns) at 1GHz and RICUwidth 8. Note that every instruction
incurs a latency of at least 100 processor cycles (the latency
of off-chip communication).
There is a clear difference between the SPECINT and

SPECFP benchmarks. At 1GHz and RICU width 4, SPECINT
has a geomean latency of 123 CPU cycles (61.5ns), while
SPECFP has a geomean latency of 220 CPU cycles (110ns).
SPECFP’s higher latency comes from the higher latency of
floating point operations compared to integer operations,
which is magnified by the fact the Sentry runs at half the
frequency of the untrusted processor.

7.4 Energy
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Figure 13. TrustGuard’s energy usage. Processor Fre-
quency=2GHz, RICU Width=8, Sentry Frequency=1GHz,
Bandwidth=16GB/s

We used McPAT v1.2 [55] to model the energy of the
TrustGuard processor and Sentry using execution statistics
from the performance simulation. Power for the MAC en-
gines was estimated using an HMAC-MD5 accelerator [101],
adapted to our design using technology scaling. Figure 13
shows the energy consumption of TrustGuard, normalized
to the energy consumption of the baseline untrusted pro-
cessor. The geomean energy consumption for TrustGuard
was 41.0% greater than the baseline, while instantaneous
power was 16.0% greater than the baseline. The untrusted
processor in TrustGuard showed a geomean 13.0% higher
energy consumption than the baseline processor. The ge-
omean energy consumption of the Sentry itself is 19.9% of
the energy consumption of the baseline processor, which
is significantly lower than the 100+% increase that would

come from a second redundant processor. The main factors
for Sentry’s lower energy consumption compared to the un-
trusted processor are its lower frequency, the absence of an
L2 cache, and the absence of the OoO support structures.
Furthermore, the link–modeled as a PCIe interconnect [88]
consumes a geomean 8.0% of the energy of the untrusted
processor. 429.mcf saw a large energy overhead due to its
memory intensive nature and, the majority of the overhead
comes from the Merkle tree accesses and hash computations.

8 Simplicity of the Sentry
Only the Sentry must be secured to ensure containment of
the entire system. The simpler the Sentry, the more confi-
dence there will be in its containment guarantees. To eval-
uate the design complexity of the Sentry, we use the obser-
vation by Bazeghi et al. [13] that lines of HDL code serve
as a good approximation of a design’s complexity. For this
purpose, we built an FPGA prototype of the Sentry support-
ing the RISC-V user-level ISA [71]. We chose RISC-V due to
the unavailability of a full, open-source ARM processor. We
synthesized the Sentry design onto a NetFPGA SUME FPGA
Board using Xilinx Vivado 17.2.

Table 2 shows the lines of code (LoC) our prototype Sentry,
along with the reported size of various open-source proces-
sors. The Sentry’s design complexity compares favorably
to in-order processors, some of which have been formally
verified [20, 58, 64, 83]. Table 2 shows that the Sentry pro-
totype’s LoC is an order of magnitude less than that of the
out-of-order (OoO) processors. Concerning area, we found
that a single-core BOOM configuration uses ∼4× the number
of LUTs and ∼3× the number of flip-flops compared to the
Sentry [71].

The Sentry is simpler than the processor in many ways. It
lacks both cache and memory controllers. Functional unit re-
execution in the Sentry is simpler than instruction execution
in a processor. The Sentry does not include out-of-order exe-
cution, branch predictors, memory dependence predictors,
register renaming units, dispatch units, reorder buffers, mul-
tiple cache levels, load/store queues, inter-stage forwarding
logic, bypass networks, memory control, and misspeculation
recovery support. Note that most of these components op-
timize overall performance rather than perform the actual
execution of instructions. The Sentry is incapable of initiat-
ing instruction execution on its own. Instead, it relies on the
processor to direct its work.

The cache checking unit (CCU) and parallel checking are
optimizations to the Sentry worth the added complexity. The
size and design complexity of the MAC engines in the CCU
is comparable to other functional units already present on
both the processor and the Sentry, and MAC engines have
been formally verified [91]. The processor performs much
of the Merkle tree and cache control logic for the Sentry,



Processor Leon3 [13] PUMA [13] IVM [13] BOOM [71] Sentry
Description In-Order OoO no FP OoO no FP OoO This Work
Language VHDL Verilog Verilog Chisel Verilog

Lines of
Code (LoC)
for various
components

Pipeline 2814 Fetch 1490 Fetch 4972 Fetch 1974 OR 425
Memory 4456 Decode 3416 Decode 963 Decode 650 VG 392

ROB 913 Rename 2519 ROB 709 CH 60
Execute 9613 Issue 2704 Rename 456 CCU 1030
Memory 2251 Execute 4083 Issue 356 FPU 1636

Retire 2278 Execute 3898
Memory 5308 Memory 7407

Total 7270 Total 17683 Total 22827 Total 15450 Total 3543

Table 2. Comparison of implementation complexities in terms of lines of code (LoC) of various open-source processor designs
against that of the Sentry prototype. Note: Processor proof of correctness would not secure memory nor program integrity.

thus further reducing the Sentry’s complexity (§5.3). Parallel
checking requires relatively simple forwarding logic between
functional units compared to pipeline forwarding in OoO
engines.

9 Conclusion and Future Work
This paper proved the viability of the containment-based
security approach. The TrustGuard proof-of-concept imple-
mentation showed that a separate, simple Sentry can validate
the execution of a processor with less than 15% geomean
impact on performance. These results motivate further ex-
ploration of containment-based security techniques, tools,
and implementations.

Programmer-Enabled Selective Checking Not all of a
trusted program needs to be validated by the Sentry to ensure
the correctness of external communication. For example, the
Sentry does not need to check the execution of any program
that does not produce external communication.
Prior work has shown that a small piece of trusted

code can be used to validate the result of a large pro-
gram [53, 63, 111, 113]. This has inspired the exploration
of a Sentry programming model, where the validation code
is used to validate the execution of untrusted parts of the
program and the Sentry checks the validation code itself.
The creation of such a Sentry programming model would
allow programmers, perhaps with the help of tools, to divide
their programs into trusted and untrusted regions or to cre-
ate checking code to validate results produced by untrusted
code prior to output. Initial exploration has shown that SAT
solvers [61], filesystems [35], databases [67, 111, 113], and
iterative algorithms [80] are good candidates for applying
such selective checking mechanism to improve performance.

Multicore Support A natural next step of any single-core
feature is the extension to multicore. There are many ways
to support multicore, and we leave the exploration of that
space, for now, as work inspired by the success reported in
this paper. This space includes supporting multicore with a

Sentry per core. This method would increase the required
bandwidth between the processor and the Sentries to the
point of infeasibility. Since the Sentries would likely need to
be placed on the same die, the threat model of the system
will change.

Another possibility is to use selective checking to sup-
port validation of multithreaded programs, where trusted
code running on a single thread can validate the result of
a multithreaded program. Witness generating SAT solvers
provide an example for such a system. Such SAT solvers pro-
duce a witness that is validated by a verifier [61]. A single
threaded verifier, checked by the Sentry, could ensure correct
output by checking the proof witness generated rapidly by
an untrusted multithreaded SAT solver.

Cache Policy and Sentry Independence The current L1
cache mirroring scheme works well to simplify the inter-
face between the processor and Sentry. It also reduces the
overhead of managing the Sentry’s cache. A processor-
independent Sentry is desirable for many reasons, including
portability and reusability, but would require decoupling the
cache designs. An independent cache design also creates new
optimization opportunities. For example, the processor could
serve as an oracle for the Sentry since it is typically hundreds
of instructions ahead. Thus, a more optimized design may,
without loss of correctness guarantees, replace the cache on
the Sentry with a scratchpad memory.
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