
Hardware Multithreaded Transactions

Jordan Fix Nayana P. Nagendra Sotiris Apostolakis

Hansen Zhang Sophie Qiu David I. August
Princeton University

{jfix,nagendra,sa8,hansenz,hqiu,august}@princeton.edu

Abstract
Speculation with transactional memory systems helps pro-
grammers and compilers produce profitable thread-level par-
allel programs. Prior work shows that supporting transactions
that can span multiple threads, rather than requiring transac-
tions be contained within a single thread, enables new types
of speculative parallelization techniques for both program-
mers and parallelizing compilers. Unfortunately, software
support for multi-threaded transactions (MTXs) comes with
significant additional inter-thread communication overhead
for speculation validation. This overhead can make otherwise
good parallelization unprofitable for programs with sizeable
read and write sets. Some programs using these prior soft-
ware MTXs overcame this problem through significant efforts
by expert programmers to minimize these sets and optimize
communication, capabilities which compiler technology has
been unable to equivalently achieve. Instead, this paper makes
speculative parallelization less laborious and more feasible
through low-overhead speculation validation, presenting the
first complete design, implementation, and evaluation of hard-
ware MTXs. Even with maximal speculation validation of
every load and store inside transactions of tens to hundreds
of millions of instructions, profitable parallelization of com-
plex programs can be achieved. Across 8 benchmarks, this
system achieves a geomean speedup of 99% over sequential
execution on a multicore machine with 4 cores.

CCS Concepts • Computer systems organization ! Mul-
ticore architectures; • Software and its engineering !

Multithreading

Keywords Hardware transactional memory; multithreaded
transactions; pipelined parallelism; thread-level speculation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173172

ACM Reference Format:
Jordan Fix, Nayana P. Nagendra, Sotiris Apostolakis, Hansen Zhang,
Sophie Qiu, and David I. August. 2018. Hardware Multithreaded
Transactions. In ASPLOS ’18: Architectural Support for Program-
ming Languages and Operating Systems, March 24–28, 2018,
Williamsburg, VA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3173162.3173172

1 Introduction
Due to fundamental constraints on power usage and heat dis-
sipation, microprocessor manufacturers have resorted to mul-
ticore processors with multiple individual processing cores.
However, multicore processors do not improve sequential
program performance; programs must be modified to incorpo-
rate thread-level parallelism (TLP) to take advantage of these
parallel resources.

Static parallelization that conservatively respects all poten-
tial dependences has achieved success in some domains, such
as streaming applications [38], MapReduce applications [8],
and embarrassingly parallel DOALL [19] tasks such as ma-
trix multiplication. However, equivalent success has not been
found for general purpose, complex programs, such as those
with irregular pointer-chasing data structures. To allow for
more aggressive TLP extraction without explicit dependence
synchronization or communication on these programs, specu-
lative execution and transactional memory (TM) systems have
been explored. For example, thread-level speculation (TLS)
techniques [5, 7, 13, 34, 35] have not reached widespread use
due to their inapplicability or lack of performance.

Alternatively, parallel pipeline techniques [26, 30, 37] and
their speculative counterparts [22, 29, 39, 40] can be utilized.
These past works have found that speculatively pipeline par-
allelizing a program often has better performance than other
parallelization schemes using traditional TLS.

Unfortunately, most TM systems used for TLS do not pro-
vide sufficient support for speculative pipelined parallelism,
which split individual transactions across multiple pipelined
threads. Speculative pipeline parallelism requires TM systems
that support multithreaded transactions (MTXs), wherein
multiple threads can collaborate on a single transaction that
can atomically commit or rollback.

Some software TM (STM) systems [22, 29] have MTX
support, allowing speculative pipeline parallelism techniques
to be used on commodity hardware. However, these systems

suffer from high runtime overheads, which can curtail the
performance of what would otherwise be well-performing
parallel programs. Most troublesome is the overhead from
communication of large read and write sets for transaction
validation, which can be prohibitively costly [4].

Thus to be useful for complex programs, these STM sys-
tems must limit the amount of speculation validation per-
formed. This requires laborious expert manual transformation
to avoid these overheads and achieve speedup. And without
further advances in compiler analyses to eliminate the need
for significant amounts of validation checks, these STM sys-
tems are not useful for automatic speculative parallelization of
complex programs. Prior work [18] examined the importance
of static dependence analysis in a speculative automatic par-
allelizing compiler for simple programs with affine accesses
such as matrix multiplication. Scalable speedup turned into
significant slowdown when using weaker dependence anal-
ysis due to increased speculation validation overhead. Even
with the strongest modern static analyses, more complex pro-
grams have not been profitably parallelized due to required
speculation validation.

Thus, a TM system with low-overhead speculation valida-
tion is essential to achieve automatic parallelization of com-
plex programs and thus more widespread use of speculative
parallel execution. Hardware TM (HTM) systems can provide
this low-overhead speculation validation. However, no HTM
systems with MTX have been comprehensively explored.

This paper presents the first complete design, implementa-
tion, and evaluation of a TM system with support for hardware
multi-threaded transactions (HMTXs). In this system:

• Multiple threads can collaborate on a single transaction,
with uncommitted memory modifications visible to all
threads working on the transaction, and with the ability
for these modifications (potentially spread across many
caches) to atomically commit together.

• Multiple transactions can execute on a single core without
requiring any of them to commit or abort, allowing for
a thread to finish work on one transaction and begin on
another without interfering with the first (which may still
be uncommitted).

Additionally, most existing HTM systems do not provide
sufficient support for long-running and complex transactions
that are often required for long-running and complex pro-
grams. To this end, in this system:

• Transactions are resilient; they novelly avoid false misspec-
ulation due to branch misprediction, support large read and
write sets, and allow for interrupt and exception handling.

• A lazy commit and abort scheme is used, efficiently pro-
cessing large read and write sets (up to tens of megabytes
of data in the evaluated benchmarks).

Ti
m
e

(d)
PS-DSWP

(a)
Sequential

(b)
DOACROSS

(c)
DSWP

w2

w4

w1

w2

w3

w4

w1

w2

w3

w4

w5

w1

w3

w5

w1

w2

w3

w4

n3

n1

n2

n1

n2

n3

n4

n5

n1
n2
n3
n4
n5

n1
n2
n3
n4
n5

w5

T1 T1 T2 T1 T2 T1 T2 T3

w5

n4

n5

Figure 1. Execution timing diagram of the first 5 iterations of a loop
for Sequential, DOACROSS, DSWP, and PS-DSWP.

The combination of these features allows for the HMTX
system to achieve profitable parallelization of complex, long-
running programs with large amounts of speculation valida-
tion. This overcomes a large barrier to achieving automatic
parallelization, and makes it easier for compilers and pro-
grammers alike to create well performing parallel programs.

This paper presents 8 benchmarks (7 from the SPEC bench-
mark suite [14, 15], and 1 from MiBench [11]) that are spec-
ulatively parallelized with the maximal possible amount of
speculation validation, i.e. conservatively adding every load
and store inside a transaction (often made of up of tens to
hundreds of millions of instructions) to the read and write
set. Despite such large amounts of validation, this system
achieves a geomean speedup of 99% over sequential execu-
tion on a multicore machine with 4 cores, exhibiting the limits
to which transactional memory can be used while sustaining
good parallel performance.

2 Background and Motivation
2.1 Thread Level Parallelization Techniques
Techniques such as DOALL, DOACROSS [3, 19], and pipeline
parallelization [26, 30, 37] have been used in order to better
leverage multicore architectures via TLP. In DOALL, each
iteration of a loop is fully independent of the others and there-
fore each iteration can be executed in parallel. This is mostly
applicable only to scientific programs that perform affine
operations on regular data structures.

DOACROSS can extract parallelism from more complex
loops with loop-carried dependences. Consider a linked list in
which some work function is performed at each node. Each
iteration needs to know the previous iteration’s node to find
its own node, which means this dependence is loop-carried,
and DOALL is therefore inapplicable.

DOACROSS parallelizes this program in the following
fashion. Thread t1 finds the first node n1, and then sends the
next node n2 to thread t2. t1 continues processing n1, calling
the work function; meanwhile, t2 can start processing n2 in

parallel, and repeat this process by passing n3 to another
thread. This execution model can be seen in Figure 1(b).

This loop could also be pipeline parallelized, for example
by using Decoupled Software Pipelining (DSWP)[26], seen
in Figure 1(c). Using DSWP, the work of each iteration is
separated into a pipeline across multiple threads. In a DSWP
parallelized version of the previous linked list example, thread
t1 would iterate on finding every location n

i

in the linked list,
while sending these locations to t2 for it to separately process
the node by calling the work function.

Parallel-Stage DSWP (PS-DSWP) [16, 30] recognizes that
the resulting work in the second stage of the pipeline can now
be done in a DOALL fashion. This makes PS-DSWP more
scalable than DSWP, performing much better than DSWP or
DOACROSS. This can be visualized in Figure 1(d).

DOACROSS performance depends upon the inter-core la-
tency of the system, because the loop carried dependence
must be communicated between threads for every iteration.
Meanwhile, pipeline parallelization techniques like DSWP
are insensitive to inter-core latency, and only pay this price at
the start of execution. Past works have found that DSWP style
parallelism and its variants often have better performance than
DOACROSS [22, 29, 39]. Figure 1 shows that DOACROSS
and DSWP could only profitably make use of two threads;
meanwhile, PS-DSWP can use many more threads.

2.2 Speculation
Due to the limits of static analysis, it is often hard or im-
possible for compilers and programmers to find profitable
parallelization opportunities. To overcome inhibiting prob-
lems such as hard to analyze structures or unlikely control
flow, speculative parallelization is an attractive solution, al-
lowing for optimistic parallel execution. If any speculative
assumption is incorrect at runtime, misspeculation will be
detected and the program state will roll back to a previously
committed, valid state, undoing any potentially harmful ef-
fects.

Even if inhibitors of parallelization are input dependent,
speculating them away can still be done highly confidently,
for example based on profiling the program. Still, validation
must be conservatively performed even if the inhibitors never
manifest and trigger misspeculation. This means that low over-
head speculative validation support is very important even if
speculative parallelization is done with high confidence.

Many past TM systems provide low overhead validation
support for speculative DOALL and DOACROSS via thread-
level speculation (TLS) [5, 7, 12, 34, 35]. However, all past
TLS systems are insufficient for speculative DSWP, which
has been shown to often have better applicability and/or per-
formance than speculative DOALL and DOACROSS [22, 29,
39, 40]. Speculative-DSWP requires multi-threaded transac-
tions (MTXs), wherein transactions can span multiple threads.
In DSWP each iteration (wrapped in a transaction) is split

across multiple pipelined threads1, as seen in Figure 1 (c)
and (d). Therefore, when a transaction in the first stage of the
pipeline makes some speculative modifications to memory,
those modifications should be visible to the second stage of
the pipeline when continuing with execution of that same
transaction, even though that transaction has not yet com-
mitted. Additionally, all speculative modifications by these
pipeline stages from a single transaction should atomically be
committed at once.

2.3 Past Multithreaded Transaction Proposals
Vachharajani [39] described the general concept of multi-
threaded transactions (MTXs). The proposal gives each MTX
a version ID (VID). Speculative memory accesses from an
MTX mark memory they touch with their VID. Versioning
memory allows for key properties (described in detail in § 3)
which are requirements of an MTX system. While Vachhara-
jani described an initial design for a hardware TM system
with MTXs, we are unaware of any detailed implementation
or evaluation having been published. Additionally, parts of
the design were unrealistic or left incomplete (§ 7).

Later MTX proposals opted for software based TM sys-
tems to allow for speculative DSWP execution on commodity
hardware [20, 22, 25, 29]. These systems follow in the same
path as Vachharajani, assigning a VID to each transaction.
They provide for multiple versions of memory by forking the
main process (called the commit process), which contains and
manages the committed non-speculative state, and allowing
the other processes to execute transactions, which modify
their own versions by relying on copy-on-write support in
the OS. Transactions then rely on the TM system both to
access the correct version of memory given some VID and
to atomically commit all speculative writes of a transaction,
even if they come from different threads given the VID.

In these systems, explicit communication is required both
for passing speculatively memory modifications between
pipeline stages (uncommitted value forwarding), and for send-
ing records of speculative memory accesses to the commit
process (speculation validation). The amount of this required
communication and the resulting performance impact it has
is dependent upon the complexity of the program being par-
allelized and the abilities of the method of parallelization
(e.g. automatic vs. manual). For example in prior MTX STM
systems [22, 29], expert programmers performing laborious
manual pipeline parallelization ensured that speculation val-
idation was low via minimal read and write sets in order to
achieve speedup on complex programs.

1Using DSWP’s pipeline partitioning algorithm, instructions inside a par-
allelized loop’s body are not necessarily kept in order with respect to the
original program when partitioned across different pipeline stages. When
combined with commonly used control flow speculation, it is insufficient to
use traditional TLS transactions for each stage’s individual portion of each
iteration (e.g. putting n1 and w1 in Figure 1(d) in separate TLS transactions).

Figure 2. SMTX whole program speedup over sequential execution
with a minimal R/W set vs. a substantial R/W set.

Figure 2 demonstrates how heavily performance depends
upon read and write sets sizes when using these systems.
Whole program speedup is compared for two versions of pro-
grams using an MTX STM system: one with a minimal read
and write set, and one with speculation validation added to
shared data accesses. As expected, more speculation valida-
tion turns slight speedups into substantial slowdowns.

Similar results have been presented in the context of auto-
matic speculative parallelization [18, 25]. Johnson [18] found
that for simple benchmarks executing in a DOALL fashion
using an STM system [20, 21], “imprecise analysis forces the
compiler to compensate with more speculation . . . Increased
validation overheads cause application slowdown.”

Thus, even with the strongest modern static analyses, auto-
matic parallelization often requires speculation with sizeable
read and write sets. The resulting validation overheads can
make it difficult for these parallelized programs to achieve
speedup. Instead of hoping for future heroic static analyses,
or relying on significant expert programmer effort for manual
parallelization, this paper embraces an alternative approach:
make speculation validation cheap in order to make specula-
tive parallelization less laborious and more feasible.

3 Design Overview of the HMTX System
By providing support for low-overhead, resilient multi-
threaded transactions, HMTX enables the profitable paral-
lelization of complex programs with substantial speculation
validation. This section provides an overview of the first
HMTX design that overcomes the challenges required to
execute complex parallelized programs in modern systems.

Similar to past MTX proposals, the HMTX system allows
for different versions of memory, where multiple versions of
a single address can exist simultaneously. Every transaction
is assigned a version ID (VID), and all memory operations
inside each transaction are labeled with this VID. These VIDs
correspond to the original program order of the transactions;
given a speculative store with VID x, a speculative load with

VID < x should not see that speculative store, while a spec-
ulative load with VID � x should. If an address is read by
a transaction with VID y > x and then a speculative write
occurs to that address with VID x, all transactions with VID
� y should abort due to a read-after-write data hazard vio-
lation. To facilitate this, speculative memory accesses from
an HMTX mark memory in the caches they touch with their
VID, allowing for two key properties which are requirements
of an MTX system:

1. Group transaction commit: The speculative modifica-
tions from many distinct threads working on the same
transaction should be atomically committed as a group.
These threads are likely on different cores; hence, atomic
commit must be provided for all speculatively accessed
memory from this transaction across multiple cores and
caches.

2. Uncommitted value forwarding: An uncommitted mem-
ory modification from one pipeline stage of a transaction
should be seen by later pipeline stages working on the
same transaction. Additionally, uncommitted values from a
transaction should be visible to later transactions according
to the original sequential execution order of the program.
Many works provide uncommitted value forwarding as an
optimization [9, 12, 32–34, 41], however for MTXs it is a
requirement.

To provide support for group transaction commit, all VIDs
that are to be committed are sent to the memory system, and
then all lines with these VIDs can be committed together. To
provide support for uncommitted value forwarding, specu-
latively modified memory marked with VID x can be seen
by accesses marked with VID y � x. Program correctness
will be maintained because these VIDs correspond to original
sequential program order (§ 4.3).

3.1 New HMTX Instructions
New instructions must be added to the instruction set architec-
ture (ISA) in order to support MTX. First, transactions must
signal when they begin and end. End does not mean commit;
the current pipeline stage may simply be done with its work
on its part of the transaction, and can begin work on the next
transaction, or work on another task entirely as long as it is
not dependent upon its previous speculative tasks.

This proposal uses a single instruction to accomplish this:
beginMTX(VID). This instruction can be called to move
between different MTXs or back to non-speculative execution
(VID equal to zero). When called, it sets a VID register in the
core, specific to the thread context, to the provided VID. This
VID is attached to all memory operations in the system that
follow beginMTX in program order.

Next, a commitMTX(VID) instruction is added in order
to signify that a particular MTX should atomically group
commit. Commit must only be called once by one of the

(a) Original Non-Speculative Sequential Program

while (node):
w = work(node); //may modify order of list
if (w > MAX): break;
node = node->next;

(b) Speculative DSWP Stage 1 Parallel Version, Using HMTX

vid = 1
leaveLoop = (node == NULL);
while (!leaveLoop):
beginMTX(vid);
//create new version of producedNode w/ VID=vid
producedNode = node; //producedNode is global
node = node->next;
leaveLoop = (node == NULL);
beginMTX(0); //does not commit
produceVID(vid++);

produceVID(0);

(c) Speculative DSWP Stage 2 Parallel Version, Using HMTX

while (vid = consumeVID()):
beginMTX(vid); //continue TX started in Stage 1
//finds correct producedNode version w/ VID=vid
node = producedNode;
w = work(node); //may modify order of list
commitMTX(vid);
if (w > MAX): abortMTX(vid+1);

Figure 3. Pseudocode of a speculative version of Figure 1, with
sequential (a) and speculative DSWP with MTX (b, c).

threads participating in the transaction, and only when no
more speculative accesses will be made using this VID. In
DSWP this is once the final pipeline stage has finished.

An abortMTX(VID) instruction is also added in order to
explicitly signal an abort due to some misspeculation condi-
tion detected by the software, such as control flow misspecula-
tion. During an abort, either triggered explicitly or implicitly
via a misspeculated load or store, there must be some recov-
ery code for the threads to jump to in order to take some
action and continue execution. Therefore an initMTX(pc)
instruction must be used to set the location of this recovery
code prior to speculative execution beginning on every thread.

3.2 MTX Instruction Usage
Figure 3 shows a code example comparing the sequential and
speculative DSWP versions of a simple linked list traversal
program. The DSWP version uses the instructions from § 3.1.

First, note that in the sequential version (Figure 3(a)), the
early exit check if (w > MAX) limits parallelization; the
next parallel iteration cannot begin until the majority of the
current iteration’s work is complete. Instead, DSWP con-
trol flow speculates this dependence does not exist; it is not
checked until stage 2, after later iterations (in original pro-
gram order) have already begun in parallel. If this speculation
is incorrect then later transactions are aborted.

Transactions are first started by the initial pipeline stage
(Figure 3(b)) via beginMTX(VID). All memory operations

from this thread from this point forward come from this trans-
action, and hence any memory read or written will be marked
as such. Once stage 1 has completed its portion of the trans-
action, it calls beginMTX(0), which represents that the
program is moving back to non-speculative execution, but
is not committing. All work done between beginMTX(0)
and beginMTX(vid) at the top of the loop is essentially
bookkeeping, e.g. sending to stage 2 the VID of the transac-
tion it just finished its portion of work on, and checking that
the loop should continue iterating.

Next, note that instead of requiring explicit queue opera-
tions, HMTX’s versioned memory can be leveraged to com-
municated each node to stage 2 via a single speculative store
to the shared location producedNode. All speculative mod-
ifications are marked with the VID of each transaction, mean-
ing each transaction’s version of producedNode exists in
memory, identified by their VID. These versions are acces-
sible by other transactions if they are using the same VID
(§ 4.1).

Figure 3(c) shows stage 2, where transactions can continue
and eventually commit. Via a consume, it determines what
VID to use in order to continue with execution of a previ-
ously started transaction, and then enters that transaction via
beginMTX(VID), just as stage 1. All memory operations
are again marked with the VID of the transaction, meaning
that any memory modifications done by the prior thread inside
the same transaction are visible to this thread, even though
they were performed by a different thread and remain uncom-
mitted.

Additionally, note that stage 1 speculatively accesses
node->next. This is done with some VID = x. If at some
later time a transaction in stage 2 with VID y < x attempts
to modify node->next (e.g. during the work function),
then an abort is triggered due to a read-after-write violation
(§ 4.3).

Finally, stage 2 completes its part of the transaction and
then commits it entirely, including all modifications from the
stage 1 thread. This is done via commitMTX(VID), which
commits that specific VID and returns to non-speculative
execution.

While this code works as a two thread pipeline, it could also
be executed via PS-DSWP, with multiple threads executing
stage 2. Any data dependence issues between concurrent calls
to the work function would again be detected thanks to the
HMTX system, and an abort would be triggered (§ 4.3).

3.3 Supporting Complex, Long-Running Transactions
Most existing HTM systems do not provide sufficient support
for long-running and complex transactions that are often re-
quired for long-running and complex programs. § 5 discusses
solutions to the following problems that would otherwise
inhibit performance or make parallelization impossible.

§ 5.1: In processors with large pipelines and branch predic-
tion, loads are often speculatively executed based on branch

prediction. If a branch is mispredicted, any corresponding
squashed loads that were dependent upon this branch that
have already executed have no impact other than moving data
around in the caches. However in the HMTX system, VIDs
are marked on lines that are HMTX-based speculatively read.
This can result in spurious misspeculations if not resolved,
as lines are incorrectly marked as speculatively accessed by
VIDs due only to branch misprediction. To our knowledge, no
past work has recognized or solved this issue, likely because
most past systems either used relatively small transactions,
parallelized programs without complex control flow that re-
sulted in significant branch misprediction, or both.

§ 5.2: Given long-running transactions with complex mem-
ory access patterns, interrupts and exceptions are common-
place, e.g. due to preemption or virtual memory management.
These operations must not cause misspeculation.

§ 5.3: A naı̈ve system would need to keep track of all spec-
ulatively accessed lines in order to explicitly transition them
on commit or abort. This would require some structure in
hardware or software to scale along with the number of ac-
cessed lines (which is quite large in the evaluated benchmarks
(§ 6.3)), increasing complexity and degrading performance
of the system in execution time and energy.

§ 5.4: Speculatively modified values must have their orig-
inal non-speculative counterparts backed up until commit.
These backups can increase cache pressure, and potentially
force an abort if all speculatively modified memory cannot
fit inside the caches. Most prior systems that allow for over-
flow of speculatively accessed memory outside of caches
require bookkeeping to track this speculative memory, which
increases complexity and/or degrades performance.

4 Detailed Design of the HMTX System
4.1 Cache Coherence Protocol Modifications
The base design of the system uses a snoopy MOESI cache
coherence protocol [36]. In MOESI, there are 5 states: Modi-
fied (M), Owned (O), Exclusive (E), Shared (S), and Invalid
(I). Modified and Exclusive lines are writable, meaning there
are no other copies in the cache system and therefore writes
can proceed unhindered. Owned and Shared lines are read
only, allowing for the sharing of data across many caches. If
a line in Owned or Shared needs to be written then an up-
grade must be issued, invalidating other copies in the cache
system. Lastly, Modified and Owned lines are dirty, and must
eventually be written back to memory. Shared and Exclusive
lines are clean and can be silently invalidated and replaced if
necessary.

The behavior of the MOESI protocol is unchanged when
all lines and requests have VIDs equal to zero, which is
considered to be non-speculative. However when a cache
line and/or request have VIDs that are non-zero, hits and

Write
== h
and

m != 0

Read

Read

Write

Snooped
Read

Write

Read

Write
>= h

Read

Read

Snooped
Read

Write
< h or == 0

Write

Snooped
Read

Write
< h

Write

Unmodified Copy Created

Peer Requestor Receives
Line in Local State

Write > h
or (== h and m == 0)

(m,h) = (modVID,highVID)

(New
cache

line
copy)

(New cache
line copy)

(New cache
line copy)

(New cache
line copy)

S-O
(m,h)

S-M
(m,h)

M

S-S
(m,h)

ABORT

E

S-E
(m,h)

Read

Figure 4. State diagram for speculative accesses. O, S, and I states
are not shown for simplicity; they would follow the same path as M
or E once acquiring exclusive access.

misses behave differently. Similar to others [34], these differ-
ences are partially dependent upon new “speculative” coher-
ent states: Speculative-Modified (S-M), Speculative-Owned
(S-O), Speculative-Exclusive (S-E), and Speculative-Shared
(S-S). A state diagram for these states is seen in Figure 4 and
is explained further in § 4.2.

Multiple versions of the same cache line can exist in a
single cache set. In order to differentiate these versions, each
line has two VIDs added to it: the modifier VID (modVID),
and the highest accessor VID (highVID). In addition to tag
comparison, hits and misses are dependent upon comparing
the VID of the request to modVID and highVID. The request’s
cache set index is still dependent only on the request’s address.
If a cache set fills up, then any of the versions can be written
back to the next level cache as normal. However, note that
selecting some speculative versions of cache lines as a victim
for writeback past the last level cache forces an abort (§ 5.4).

The modVID corresponds to the VID of the transaction that
created this version of the line due to a speculative modifica-
tion. All non-speculative versions of a line have a modVID of
zero. A speculative modification creates a new cache line in
state S-M and sets its modVID to the VID of the speculative
store. An unmodified copy of the line is kept in S-O, retaining
the modVID of the original line. This can be seen in Figure 4,
with any speculative modifications that do not trigger an abort
going to state S-M, and also creating an unmodified copy in
S-O. Using these lines, reads with lower VIDs can find their
correct version of the line, avoiding write-after-read hazards.

The highVID corresponds to the highest VID which ac-
cessed this version of the line. This allows reads from later
VIDs to access a modified cache line without having to create
new cache lines; instead they only need to update highVID.
Thus, the use of these two VIDs allows us to represent multi-
ple conceptual cache line versions with a single physical line.
Additionally, it allows a speculative modification to check a
single cache line to determine if an abort must be triggered
due to a dependence violation. Finally, it is used to determine
which particular lines should hit given the accesses’ VID, and
for simplifying discarding versions of a line that are no longer
needed during commit.

The notation S-M(m,h) means that an S-M line has mod-
VID m and highVID h. The VIDs are always listed in this
order when seen in this tuple notation.

Qualitatively, the states can be thought of as follows:
S-M lines represent the “latest” speculative version of the

line, meaning this version of the line is the latest with respect
to original program order. Thus, if the VID of a speculative
write is greater than or equal to highVID, it can proceed
without triggering misspeculation, as no “later” access has
already occurred to the line. No version of the line exists with
a higher modVID. The highest VID to access this line is set to
highVID. This version of the line is dirty with respect to main
memory, so on commit it must move to a dirty non-speculative
state.

S-O lines represent speculatively accessed lines that were
later speculatively modified by a write with a higher VID.
When such a speculative modification occurs, an unmodified
copy is kept in S-O with highVID equal to the VID of the
speculative modification, while the new line with speculative
modifications moves to S-M. That S-M line may similarly
transition to S-O if it is speculatively modified by a write with
higher VID. Speculative writes that hit this version of the line
trigger an abort due to a potential dependence violation, as
some “later” access already occurred to the line.

S-E lines are essentially the same as S-M, except no ver-
sions of the line have been modified since entering the cache,
whether speculatively or non-speculatively. Consequently, on
commit the line returns to a clean non-speculative state (Ex-
clusive or Shared) instead of a dirty non-speculative state
(Modified or Owned), preventing unnecessary writeback to
memory. This state can never have modVID > 0.

S-S lines are used to allow for shared copies of specula-
tively accessed lines to exist in different caches. This enables
efficient sharing of read-only speculative accessed data, which
is important for many TLP programs. This version of the line
does not respond to snoops, as one of the S-M, S-O, or S-E
versions will respond instead.

Hits and misses are determined by combining the address
and coherent state of the line as in traditional coherent cache
systems with these VIDs of the line and the VID of the re-
ceived request. Given some speculative line, for an incoming
request with VID a:

State VIDs
S-O (0,1)

S-S (1,2)

S-M (2,2)

State VIDs
S-S (0,2)

S-M (2,2)

State VIDs
S-O (0,1)

S-O (1,2)

S-M (2,2)

State VIDs
S-O (0,1)

S-M (1,1)

State VIDs
S-E (0,1)

State VIDs
E (0,0)

work 1

beginMTX(1)

r1=M[0xa]

. . .

//call work()

. . .

commitMTX(1)

next 1

beginMTX(1)

r1=M[0xa]

M[0xa]=M[r1]

. . .

beginMTX(0)

next 2

beginMTX(2)

r1=M[0xa]

M[0xa]=M[r1]

. . .

beginMTX(0)

Thread 1 Thread 2
0

1

2

3

1
2

3
4

5
5

0

Cache 1 Cache 2

State VIDs
S-O (1,2)

4

State VIDs
S-O (0,2)

5

4

State VIDs
I (0,0)

0

Instruction
Execution Sequencen n Corresponding Post-Instruction

Execution Cache State

State VIDs
I (0,0)

1

State VIDs
I (0,0)

2

State VIDs
I (0,0)

3

//load node

//node = node->next

Figure 5. Pseudocode and cache states of the Figure 3 example.
Note that cache state is only shown for address 0xa.

• S-M/S-E(m,h): if (a � m)) hit
• S-O/S-S(m,h): if (a < h) and (a � m)) hit

These are the same conditions used to determine hits for
snooped requests on the bus. However, as noted, S-S lines
ignore snooped requests, similar to the S state in MOESI.

The modVID and highVID essentially act as a minimum-
maximum range of VIDs, used to determine what accesses hit
what lines, and when to trigger misspeculation. The protocol
is designed such that a request incoming to a cache knows if it
should hit, miss, or trigger misspeculation solely by using the
coherent state of each line, their modVID and highVID, and
the VID of the request. For example, there is no “potential”
hit case, wherein global knowledge of all versions of this line
must be gathered before determining if a line in the local
cache should have hit or is a miss. Requests will only hit
on one version of the line. If that version is not present, a
request is broadcast on the bus with the request’s VID. Only
one cache will respond, with the line that should have hit for
this request had it been in the same cache. Finally, lines do
not need to know the state of other lines in other caches to
determine what state to transition to in the case of a commit
or abort (§ 4.4).

4.2 Operation of Speculative Accesses
When a line is first speculatively accessed, writable (M or E)
access must be gained for the line in the L1 cache, as seen
in Figure 4. Once the cache has a writable copy, the request
can proceed. In the case of a read, the line is moved to S-E

(if the line was still clean (E)) or S-M (if the line was already
dirty (M)) with the VID x of the request set on the line as the
highVID. modVID is left as zero because this is a read, so the
non-speculative version of the line feeds the read and no new
version is created. Figure 5 shows an example of this case at
instruction 1 with VID 1, resulting in state S-E(0,1).

Now if a speculative write with VID y � x is received, then
a copy is made of the line to preserve the non-speculative state,
which was the version x used. The resulting states would be
S-O(0,y) and S-M(y,y). Again this is seen in Figure 5,
with VID 1 at instruction 2, and corresponding new versions
S-O(0,1) and S-M(1,1).

Continuing with the example in Figure 5, a speculative
write executed for VID 2 at instruction 3. In this case the
S-M(1,1) version transitions to S-O(1,2), setting high-
VID to 2 and keeping the data the same. Additionally a new
version of the line including the speculative modifications
is created with modVID and highVID set to the VID of the
write, S-M(2,2). Three different versions of the line now
exist with different modVIDs and data.

When a read with VID 1 is received at instruction 4, it is
broadcast on the bus and hits the S-O(1,2) version of the
line due to the scheme as described in § 4.1. The response
is sent in S-O(1,2), as seen in Figure 4. If an access with
VID greater than or equal to 2 was received it would hit the
S-M(2,2) version. This ensures correctness of execution,
as reads with VID 1 should not see the speculative updates
by transaction VID 2 but any accesses with VID greater than
or equal to 2 should see the modifications by VID 2.

Lastly, Figure 5 shows the final state after Thread 2 com-
mits. The commit process is explained further in § 4.4.

4.3 Preserving Original Program Semantics
An informal argument is provided that the original program’s
semantics is preserved using HMTX. VIDs in this system
are assigned in order corresponding to the original sequential
execution order of the program, thus they can be used to
respect dependences during speculative execution, ensuring
the original program’s semantics is preserved.

Given two transactions with VIDs x and y where x < y, all
memory operations with VID x should occur logically before
those with VID y. If this logical order is not respected during
execution then then an abort should be triggered.

We will assume for the following cases that the system
receives two memory operations, at least one of which is a
store, with VIDs x and y with no intervening accesses. We
additionally assume that their VIDs are the highest two VIDs
to access this line; if this were not the case, then some version
of the line would have highVID > the VID of at least one
store, which would trigger misspeculation.

Flow Dependences: Assume a store with VID x, s
x

, to the
same address as a load with VID y, l

y

. If s
x

occurs temporally
first, then the version of the line with this modification will
exist in S-M(x,x). When l

y

occurs, it will hit this version of

the line because y > x, and the line will move to S-M(x,y).
This is thanks to uncommitted value forwarding. Instead,
if l

y

occurs first then a version of the line will exist with
highVID == y in either S-M, S-E, or S-O. When s

x

occurs
misspeculation will be detected because of a store to a line
with VID < the highVID of the line, y.

Anti-Dependences: Assume a load with VID x, l
x

, to the
same address as a store with VID y, s

y

. If l
x

occurs temporally
first, then a version of the line will exist with highVID == x

in either S-M, S-E, or S-O. When s

y

occurs, it will hit this
version of the line because y > the modVID of the line, as
y > x and x must be � modVID of the line. A new copy
of the line will be created in S-M(y,y), and the original
version of the line will be left in S-Owith highVID y. Instead,
if s

y

occurs first, then a version of the line will be created in
S-M(y,y), and the original line that it hit will have highVID
== y. When l

x

occurs it will hit that version because x < y,
and false misspeculation will be avoided.

Output Dependences: Assume two stores with VIDs x,
s

x

, and y, s
y

. If s
x

occurs temporally before s

y

, then the ver-
sion of the line with this modification will exist in S-M(x,x).
When s

y

occurs, it will hit this version of the line because
y > the modVID of the line, x. A new copy of the line will
be created in S-M(y,y), and the original version of the line
will be left in S-O(x,y). Instead, if s

y

occurs first, then a
version of the line will be created in S-M(y,y). When s

x

oc-
curs misspeculation will be conservatively triggered because
of a store to a line with VID < the highVID of the line, y.

Thus, all dependences will be respected, and the original
program’s sequential semantics will be preserved.

4.4 Implementing Commits and Aborts
To reason about how commits and aborts occur, assume for
now that on a commit or abort every line in each cache is
inspected and immediately transitioned to a new state if nec-
essary depending on its VIDs and state. An optimized, lazy
version is introduced in § 5.3.

A commit or abort for some VID is processed via a broad-
cast on the shared L1-L2 bus along with the VID. The soft-
ware must ensure that commits always occur consecutively
(§ 4.7); otherwise behavior of the system is undefined.

A state diagram for commit transitions can be seen in Fig-
ure 6. Assume a commit occurs for some VID x. Intuitively
based on the design of the protocol, all lines with modVID
== x are now the committed non-speculative version, and
hence they set their modVID = 0. Additionally all lines with
highVID x no longer need to be marked speculative at
all, because all transactions that accessed them are complete.
Therefore these lines can move to non-speculative coherent
states (i.e. S-M/S-E! M/E, and S-O/S-S! I). As seen
in Figure 5, a commit occurs at instruction 5, and cache lines
transition accordingly.

On an abort for any VID, all uncommitted transactional
memory in the cache system is flushed. This facilitates a

CommitVID >= h:
=> set m,h = 0

CommitVID < h:
if CommitVID == m

=> set m = 0

IM

S-M
(m,h)

S-O
(m,h)

S-S
(m,h)

E

S-E
(m,h)

(m,h) = (modVID,highVID)

Figure 6. Commit state diagram.

M

S-S
(m,h)

E

S-M
(m,h)

S-E
(m,h)

I

S-O
(m,h)

m > 0:
=> set m,h = 0

m == 0:
=> set h = 0

(m,h) = (modVID,highVID)

Figure 7. Abort state diagram. Note that S-E lines must have mod-
VID == 0, hence S-E has no transition for modVID > 0.

simpler implementation; aborts should be very rare when a
program is parallelized efficiently and thus we optimize for
the common case and push slowdowns to the rare abort case.

Intuitively based on the design of the protocol, lines that
have modVID == 0 are non-speculative, and therefore they
should not be invalidated if they are dirty with respect to main
memory. Otherwise, all other lines should be invalidated. This
is reflected in the state diagram (Figure 7).

4.5 Efficient VID Comparisons
The majority of the area and power increases (§ 6.4) come
from the two m-bit VIDs per line, along with comparing them
to the incoming request VID when checking for a hit.

In the evaluated implementation, m = 6. Instead of doing
two full 6-bit comparisons on every cache set check, we note
that it is highly likely that VIDs in use by the system at
any given time are equal or very close to each other. This
is because each transaction has a single VID, and VIDs are
used consecutively between transactions. Thus, a full 6-bit
comparison is unnecessary for the large majority of accesses.
Instead, the highest 3-bits can check for equality while the
low 3-bits can check for magnitude comparison. This keeps
dynamic energy consumption low without compromising on
cache hit latency. In the very rare case that the low 3-bits
are not equal, a cascading comparison can continue for the
high 3-bits, delaying a cache hit while the comparison is
completed.

4.6 VID Overflow and Reset
Because VIDs are limited to a finite m bits, an issue arises
when the system uses all 2m VIDs. If this occurs, first the
software delays all new transactions until the one with VID
= 2m has committed. Next, a VID Reset signal is sent to the

memory system, which triggers two actions. First, all caches
set LC VID = 0. Second, the VIDs on all cache lines are reset
to (0,0) if an abort was previously seen (§ 5.3). Once this
is complete, new transactions can begin with VID == 1.

This works thanks to the design of the protocol (§ 4.1);
the “latest” versions of the line in S-M/S-E will now have
VIDs (0,0). This essentially commits them because they
have their modVID set to non-speculative state (i.e. == 0),
and their hit condition simply checks for the access VID �

modVID. Additionally, the previously buffered “non-latest”
speculative versions now in S-O/S-S(0,0) can never hit
for an access because their hit condition checks for the access
VID < highVID which can never be true. These lines will
simply be invalidated when selected as a victim.

When using DSWP, VID Resets can be costly because they
stall the DSWP pipeline until the transaction with maximum
VID = 2m commits. Thus the decision of how many bits
should be used for VIDs leaves a tradeoff of execution time
vs. implementation complexity and energy consumption. We
settled on 6 as a fair medium.

4.7 Operating System and Program Support
Operating system (OS) support is required to determine the
maximum size of VIDs, m. The software should query the
OS to determine m, and then ensure all outstanding commits
have occurred before triggering a VID reset (§ 4.6).

Additionally, the program must ensure that the active VIDs
in the system correspond back to original program order, and
that commits occur in consecutive order, e.g. VID 2 commits
only after 1 and before 3.

Lastly, output must be handled specially inside a transac-
tion. Outputs are explicitly buffered to ensure no speculative
effects occur until commit. Prior work [20] created a trans-
actional I/O system to overcome this, which could be used
instead.

5 Supporting and Optimizing For Complex,
Long-Running Transactions

Most existing HTM systems do not provide sufficient support
for long-running and complex transactions that are often re-
quired for long-running and complex programs. This section
introduces the most important enabling optimizations.

5.1 Squashed Loads and False Misspeculation
As discussed in § 3.3, cache lines may become incorrectly
marked as speculatively accessed due to branch misprediction
inside of a transaction, leading to spurious misspeculations.
To overcome this problem, we introduce the speculative load
acknowledgment (SLA). When a branch-speculative load is
executed it does not immediately mark the line it accesses
with its VID. Once the load is actually committed, then it is
safe to mark the line with its VID. At this point an SLA is
sent to the cache system, which includes the value which was

loaded, the address of the load, and the VID of the load. A
structure similar to the store queue buffers these SLAs until
they should be sent. The cache system receives this request,
verifies that the original value loaded in the SLA is the same
as the current one at that address, and then transitions the line
to the correct speculative state. Otherwise an abort is triggered.
This optimization avoids many false misspeculations (§ 6.3).

Note that an SLA does not need to be sent for an access to
a line that already has logged that the VID accessed it, either
from an earlier confirmed speculative load with the same
VID, or from a speculative store with the same VID. When a
speculative load executes, it is returned to the CPU with a bit
representing if an SLA is required. This way when the load is
committed due to correct branch prediction it knows whether
or not to send an SLA. Thanks to memory access locality, the
number of SLAs that need to be sent is low (§ 6.3).

5.2 Surviving Interrupts and Exceptions
In order for transactions to survive interrupts (e.g. for context
switches) and exceptions (e.g. for virtual memory manage-
ment), the operating system must be able to non-speculatively
perform memory operations once interrupted. This is espe-
cially important for long running transactions and those which
access large or irregular pointer-chasing data structures. Even
programs without such memory access patterns may require
non-speculative exception handling, as operating systems of-
ten lazily load pages on-demand and thus would need to non-
speculatively ensure all required memory inside a transaction
is already loaded prior to speculative execution.

To support this, we statically link the parallelized programs,
and then have the program inform the HMTX system of the
range of the program’s text segment, so that it will only add
the VID onto loads and stores that fall into this PC range. This
results in functioning non-speculative interrupts. Dynamically
linked programs could also be supported if the system is made
aware of the addresses of the libraries.

Note that, unlike most hardware TM systems, speculative
threads can migrate between cores; their data can be found in
other caches naturally through the VID of the transaction.

5.3 Lazy Commits and Aborts
As noted in § 3.3, a naı̈ve scheme such as that presented in
§ 4.4 would need to keep track of all speculatively accessed
lines in a manner which is not scalable or efficient for large
read and write sets. To improve upon this scheme, the HMTX
system adapts an approach used by other works [13, 27, 41]
by using lazy speculative state processing. A new register is
added to each cache representing the latest committed VID
(LC VID). Additionally, two new bits are added to every
cache line: a Committed Bit (CB) and an Aborted Bit (AB).

On commit, all caches must complete two tasks. First, they
set their LC VIDs to the VID of the commit. Second, every
line has its CB set to 1 if AB 6= 1. Meanwhile, aborts do
not change LC VID, but similar to commits each line sets its

AB to 1 if CB 6= 1. This ensures that AB and CB are never
simultaneously set.

For every speculative access that arrives, the cache contin-
ues using the same hit and miss logic as before, as described
in § 4.1. Non-speculative accesses use VID = LC VID for hit
logic only. This intuitively makes sense, as non-speculative
accesses should access the last committed version of a line.

Using CB and AB, lines are updated for commit (if CB
== 1) or abort (if AB == 1) if a hit occurs for that version
of the line, or if that line is chosen as a victim for write
back to the next level. For commits, the VIDs of the line will
be checked against the cache’s LC VID, and any transitions
necessary can be made on a single line basis. Similarly, aborts
can transition based on the line’s VID. Lastly, processing
aborts lazily requires that we additionally ensure that hits can
never occur for lines with modVID > 0 and AB == 1.

Given this design, no complex cache operations are re-
quired on commit or abort; execution can proceed quickly
without waiting for an expensive or costly cache operation
where every line must be explicitly transition based on the
commit or abort state machine. This additionally limits the
complexity of implementation. This lazy commit scheme is
possible because of the design of the coherence states, which
allows for a lines to transition to its next state without needing
to query for the state of any other lines in the system.

5.4 Speculative Memory Overflowing the Caches
Each cache line’s modVID and highVID enable different
versions of memory as well as tracking and verifying the
ordering of accesses to these versions. Naı̈vely, this means
that all speculatively accessed lines would need to stay inside
the caches for the system to function correctly.

Note however that the scheme saves many non-speculative
versions (in S-O with modVID = 0). Because these lines are
non-speculative, they are safe to write back to memory. How-
ever, we must guarantee that they can be retrieved back in a
speculative state that ensures correct execution. The protocol
ensures this because if there is a line in S-O, there must also
be an S-M line also somewhere in the cache hierarchy. If an
S-M line snoops a request with VID = y for a line that has
the same address but does not hit due to VID comparison, it
asserts that the line was already speculatively modified. If the
request then misses all caches, it knows that it should have
hit an S-O version with modVID = 0 that must have been
written back to memory. Thus when the request is satisfied by
memory it is returned in S-O(0,y+1), and speculative exe-
cution can resume. This preserves correctness while allowing
for larger read and write sets.

If a line not in state S-O with modVID = 0 is selected as
a victim from the last level cache, then the transaction should
abort. In order to reduce such aborts, victim selection in the
last level cache can prioritize such S-O lines for eviction over
other speculatively accessed lines.

Benchmark Parallel
Paradigm

Hot Loop
Native Exec

Time %

Avg Number
of Spec Mem

Accesses Per TX

Number of TX
Aborts Avoided
via SLA Per TX

% of Spec
Loads

Needing SLA

% of Branch
Insts Inside
Hot Loop

Branch Mispred
Rate Inside
Hot Loop

052.alvinn DOALL 85.5% 2,290,717 0.158 1.28% 11.5% 0.245%
130.li PS-DSWP 100% 181,844,120 22.5 4.21% 20.5% 3.65%

164.gzip PS-DSWP 98.4% 6,248,356 3.32 7.08% 14.6% 2.68%
186.crafty PS-DSWP 99.5% 4,498,903 1.50 4.92% 13.1% 5.59%
197.parser PS-DSWP 100% 24,733,144 24.6 2.56% 19.2% 1.05%
256.bzip2 PS-DSWP 98.5% 131,271,380 17.3 6.04% 12.6% 1.33%

456.hmmer PS-DSWP 100% 1,709,195 0.187 1.40% 4.83% 1.03%
ispell PS-DSWP 86.5% 43,752 0.0280 13.0% 16.6% 2.82%

Table 1. Statistics from simulated speculative execution using HMTX, and from native sequential non-speculative execution.

Feature Parameter
Architecture Alpha 21264
Clock Speed 2.0 GHz
L1 I and D Caches 64KB, 8-way set associative, 2 cycle latency
Shared L2 Cache 32MB, 32-way set associative, 40 cycle latency
Cache Line Size 64B
Base Cache
Coherence Protocol MOESI

Memory 1GB, 200 cycle latency
Operating System Linux Version 2.6.27.6
Compiler GCC Alpha Cross Compiler, Version 4.3.2

Table 2. Architectural Configuration in gem5.

6 Evaluation
The HMTX system was implemented and evaluated using the
gem5 simulator [2] in full system mode with a 4-core out-of-
order processor. Table 2 shows the hardware configuration.
Hot loop speedup is compared. Approximately 15% of the
iterations of the hot loops are measured and evaluated due to
limitations of the simulation environment.

6.1 Benchmarks
We evaluated 8 benchmarks (7 from the SPEC benchmark
suite, and 1 from MiBench), all of which need speculation for
efficient TLP transformation. Of these benchmarks, 6 were
also evaluated by SMTX [29]; replicated SMTX results for
these 6 are directly compared against. We focused mostly on
those benchmarks that use the DSWP execution paradigm, as
they require MTX support. The same parallelization paradigm
was used for both the SMTX and HMTX versions. Table 1
shows the benchmarks and their parallelization paradigms, as
well as the percentage of the execution time the hot loop runs
for on a native x86 machine.

The benchmarks were speculatively parallelized manu-
ally for both the SMTX and HMTX versions. However even
though the HMTX versions were manually transformed, all
loads and stores inside a transaction were added to the read
and write sets, meaning speculation validation is performed
for every memory access inside a transaction. This is the
maximum amount of speculation validation possible for spec-
ulative parallel execution. Therefore this represents the worst

 0

 0.5

 1

 2

 1.5

 2.5

− 052.alvinn

− 130.li

− 164.gzip

− 197.parser

− 256.bzip2

− 456.hmmer

− Geomean (Comp.)

− 186.crafty

− ispell

− Geomean (All)

H
o

t
L

o
o

p
 S

p
ee

d
u

p

Benchmark

Hot Loop Speedup over Sequential

SMTX w/ 4 Cores and Minimal R/W Set
HMTX w/ 4 Cores and Maximal R/W Set

Figure 8. Hot loop speedup over sequential using 4 cores. SMTX
versions have minimal read and write sets due to expert manual trans-
formation. HMTX versions perform speculation validation on every
read and write inside a transaction, i.e. the maximum possible read
and write set. Note that we have no SMTX comparison for 186.crafty
and ispell; accordingly, “Comp.” represents those benchmarks with
an SMTX comparison, while “All” represents all benchmarks.

possible case for validation overhead, regardless of automatic
or manual parallelization.

Meanwhile, the SMTX versions retained the advantage of
negligible speculation validation thanks to expert transfor-
mation, with minimal read and write sets. As noted, this is
not a reasonable expectation for automatic parallelization or
non-expert programmers (§ 2.2).

6.2 Hot Loop Speedup
As seen in Figure 8, the HMTX system with 4 cores provides
a geomean speedup of 1.99x over sequential execution on
all 8 benchmarks. On the 6 benchmarks evaluated by both
HMTX and SMTX, HMTX has a speedup of 2.02x, outper-
forming SMTX with a speedup of 1.44x. Thus, with 4 cores
HMTX achieves better performance than SMTX while also
performing significantly more speculation validation. Note
that SMTX requires the extra commit process, taking up one
core’s resources.

Hardware Exec Model Area (mm2) Total Leakage (W) Geomean Runtime Dynamic (W) Geomean Energy (J)

Commodity Sequential (All)
107.1 5.515

3.577 7.323
Sequential (Comp.) 3.654 10.91
SMTX, Min R/W 13.66 15.32

Commodity
+ HMTX

Extensions

Sequential (All)

111.1 5.607

3.618 7.431
Sequential (Comp.) 3.696 11.07
SMTX, Min R/W 13.87 15.57

HMTX, Max R/W (All) 14.43 8.088
HMTX, Max R/W (Comp.) 14.46 11.77

Table 3. Area, power, and energy results on a simulated 4-core machine. “All” represents all evaluated benchmarks, while “Comp.” represents
only those benchmarks with an equivalent SMTX version to compare against. Note the difference in geomean energy between “Comp.” and
“All” is largely due to the short execution time of ispell compared to other benchmarks.

As shown in Figure 2, when the SMTX versions perform
more speculation validation (though still less than the HMTX
versions), its performance degrades badly. Therefore, these
results show that the HMTX system is a large step toward
enabling automatic parallelization.

6.3 Misspeculation
No misspeculation occurred in any of the benchmarks that
were evaluated, as only high confidence speculation is per-
formed. All false misspeculation was avoided, such as those
prevented thanks to SLAs (§ 5.1). The number of avoided
misspeculations, seen in Table 1, varies for each benchmark
depending upon the data access patterns given their complex
data structures and control flow. In general, the higher the
branch misprediction rate and percentage of branch instruc-
tions, the higher the number of avoided aborts. For example,
052.alvinn and 456.hmmer have low misspeculation rates and
low rate of branches overall, and both require less SLAs and
avoided less false misspeculations per transaction.

Table 1 additionally shows the number of SLAs that are
sent as a percentage of the number of speculative loads per-
formed by the system. Thanks to memory locality, most spec-
ulative accesses are to lines that have already been marked
as speculative with that specific VID. Thus, there is not a
significant amount of extra requests sent to the caches, and
there is minimal impact on performance.

An abort could also be triggered if certain speculatively
modified lines overflow the caches (§ 5.4). However, this
was not seen in the evaluated benchmarks. Only 197.parser
and 256.bzip2 had the allowed non-speculative versions of
speculatively read lines overflow the caches.

Figure 9 shows the average size of the read and write sets.
The geomean combined set size is 957 kB. The benchmark
with the largest average size was for 256.bzip2, with 16,222
kB. Additionally, the large number of speculative memory
accesses per transaction can be seen in Table 1.

6.4 Area, Power, and Energy
Area and power are modeled with McPAT [23]. The 22nm
technology node is used. Power gating and low L2 cache

− ispell

− Geomean

N
u

m
b

er
 o

f
K

il
o

b
y

te
s

Benchmark

Average Read/Write Set Size per Transaction in Kilobytes

Read Set
Write Set
Combined Sets

 1

 4

 16

 64

 256

 1,024

 4,096

 16,384

− 052.alvinn

− 130.li

− 164.gzip

− 186.crafty

− 197.parser

− 256.bzip2

− 456.hmmer

Figure 9. Average size of the read and write sets in kB.

standby power are utilized. Table 3 displays statistics gath-
ered.

An HMTX system with 4 cores has a total area of 111.1
mm2, 4.0 mm2 larger than the base system with the same
cache sizes and core count (107.1 mm2), which was used for
SMTX evaluation. The largest source of these increases in
the HMTX system is adding 12 bits to every line in the cache,
6 each for the modVID and highVID, as well as the low-high
cascading comparators as discussed in § 4.5.

McPAT uses CACTI [24] in order to model caches, which
performs architectural modeling of SRAM based caches. To-
tal leakage increases marginally when adding in HMTX ex-
tensions (Table 3). Additionally, geomean runtime dynamic
power consumption increases for HMTX due to the afore-
mentioned logic and cache modifications for HMTX. Overall,
energy consumption with HMTX is lesser than for SMTX,
largely due to the difference in execution time.

Applications running on hardware with HMTX extensions
would still have an increase in energy consumption even if
they do not utilize HMTX functionality. To evaluate this im-
pact, we ran the same SMTX and sequential benchmarks on
HMTX hardware through McPAT. Note that this has no im-
pact on execution time. Overall, geomean runtime dynamic
power and energy consumption increased marginally (Ta-
ble 3). This highlights the low impact of HMTX extensions.

7 Related Work
7.1 MTX by Vachharajani [39]
The HMTX system follows Vachharajani’s lead by adding
version IDs to each cache line, as noted in §2.3. However,
there are some important differences between the two works.

Speculative Memory Processing Efficiency. Vachhara-
jani’s commit protocol is prohibitively expensive, both in
complexity and time. On commit, the entire cache must be
searched for every line with the committed VID (similar to the
naı̈ve version in §4.4). Even with an ORB-like structure [34]
that holds the address of every speculatively accessed line,
processing every speculative line individually on every com-
mit would still be very slow. Additionally, the protocol re-
quires broadcasting an invalidation for each speculatively
modified line to gain exclusive access to it. This would lead
to considerable bus contention and further degrade perfor-
mance. Lastly, the abort implementation is not discussed in
detail, and VID overflow is not considered.

By contrast, HMTX is designed so that the state of other
versions of the same line does not need to be known, nor does
there need to be an invalidation or interaction with them to
perform a commit or abort (§ 4.4). This allows for both to
occur lazily, similar to other works [27, 41]. This simpler,
lazy approach is not bursty or time consuming in searching
an entire cache or processing all lines at once, allowing for
transactions that speculatively access large amounts of data.

Cache Pressure. Vachharajani’s work creates a new ver-
sion of a cache line for every read from a new version. This
may lead to unnecessary cache pressure as many read-only
lines redundantly store the same data. By contrast, HMTX
only creates new lines when a speculative write occurs to a
line that has not yet been speculatively written for the given
transaction’s VID. In addition to reducing cache pressure, this
also allows for transactions with larger read and write sets.

Commit Granularity. Vachharajani’s byte-level commit
granularity requires much higher space and complexity. By
contrast, HMTX uses cache line-level granularity. This re-
duces the complexity of implementation without any increase
in misspeculation rates on the evaluated benchmarks.

7.2 Single-Threaded TM Systems
No past hardware TM systems have sufficient support for
multi-threaded transactions via both uncommitted value for-
warding and group transaction commit. Consequently, these
systems cannot support speculative pipeline parallel execu-
tion. By contrast, HMTX can support a wide range of specu-
lative execution paradigms, from TLS to DSWP-style execu-
tion.

Similar to HMTX, versioned memory is used by some TM
systems to manage transactions [7, 10, 27, 31, 32, 34, 41].
This enables lazy commits and holding speculative state from
multiple tasks in a single cache, which are both used by
HMTX. However, none of these systems allow for a single

transaction’s speculative memory to migrate to other peer
caches, which is a requirement for pipeline parallelization
(§ 2.3).

Many past systems provide an ordering for transactions as
HMTX does, allowing for uncommitted value forwarding as
an optimization [9, 12, 17, 32–34, 42]. However, as noted in
§ 2.3, group commit is also required in order to ensure that
all speculative modifications from a single transaction, likely
spread across multiple caches, are atomically committed.

Additionally, while some TM systems support large read
and write sets [1, 6, 27, 28], most cannot support transactions
as large as those in the parallelized benchmarks presented.
Thus, even if they did support uncommitted value forward-
ing and group transaction commit, they would be unable to
perform speculative pipeline parallelization.

Lastly, all prior systems are susceptible to false misspecula-
tions due to branch misprediction, which HMTX overcomes
via SLAs (§ 5.1).

8 Conclusion and Future Work
This paper presented the HMTX system, the first complete
design, implementation, and evaluation of a hardware TM
system with support for multi-threaded transactions (MTX).
MTX is required for thread-level pipeline parallelization, an
important class of parallel execution techniques. HMTX pro-
vides MTX as well as resilient, long-running transactions
without excessive hardware cost. On a multicore machine
with 4 cores, a geomean speedup of 99% is achieved over
sequential execution, with modest increases in power and
energy consumption.

Future work could adapt the HMTX coherence scheme to
a directory-based protocol to allow for efficient scaling to
many more cores. Additionally, similar to prior systems [27],
unlimited read and write sets could be supported by overflow-
ing speculatively modified versions of lines into memory and
managing them via data structures.

Lastly, a large motivation of this work is to take a big step
closer to automatic parallelization. A compiler could achieve
profitable automatic speculative parallelization with the help
of low overhead speculation validation via HMTX.

Acknowledgments
We thank the Liberty Research Group for their support and
feedback during this work. We also thank the anonymous
reviewers for their insightful comments and suggestions.
This work is supported by the National Science Foundation
(NSF) under Grants OCI-1047879, CCF-1439085, and CNS-
0964328. All opinions, findings, conclusions, and recom-
mendations expressed in this paper are those of the Liberty
Research Group and do not necessarily reflect the views of
the NSF. This work was carried out when the authors were
working at Princeton University.

References
[1] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.

Leiserson, and Sean Lie. 2005. Unbounded Transactional Memory. In
Proceedings of the 11th International Symposium on High-Performance
Computer Architecture. IEEE Computer Society, Los Alamitos, CA,
USA, 316–327. https://doi.org/10.1109/HPCA.2005.41

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2
(Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[3] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa
Reddi, Gu-Yeon Wei, and David Brooks. 2012. HELIX: automatic
parallelization of irregular programs for chip multiprocessing. In CGO.

[4] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng
Wu, Stefanie Chiras, and Siddhartha Chatterjee. 2008. Software Trans-
actional Memory: Why Is It Only a Research Toy? Queue 6, 5 (2008),
46–58. https://doi.org/10.1145/1454456.1454466

[5] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. 2006.
Bulk Disambiguation of Speculative Threads in Multiprocessors. In
Proceedings of the 33rd Annual International Symposium on Computer
Architecture. https://doi.org/10.1109/ISCA.2006.13

[6] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Samp-
son, Michael Van Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo
Colavin. 2006. Unbounded page-based transactional memory. In Pro-
ceedings of the 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ACM Press,
New York, NY, USA, 347–358. https://doi.org/10.1145/1168857.
1168901

[7] Marcelo Cintra, José F. Martı́nez, and Josep Torrellas. 2000. Archi-
tectural Support for Scalable Speculative Parallelization in Shared-
Memory Multiprocessors. In Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture. ACM Press, New York,
NY, USA, 13–24. https://doi.org/10.1145/339647.363382

[8] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified data
processing on large clusters. In OSDI’04: Proceedings of the 6th con-
ference on Symposium on Opearting Systems Design & Implementation.
USENIX Association, Berkeley, CA, USA, 10–10.

[9] Marı́a Jesús Garzarán, Milos Prvulovic, José Marı́a Llaberı́a, Vı́ctor
Viñals, Lawrence Rauchwerger, and Josep Torrellas. 2005. Tradeoffs
in Buffering Speculative Memory State for Thread-level Speculation in
Multiprocessors. ACM Transactions on Architecture Code Optimization
2, 3 (2005), 247–279. https://doi.org/10.1145/1089008.1089010

[10] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. 1998. Speculative
Versioning Cache. In Proceedings of the 4th International Symposium
on High-Performance Computer Architecture (HPCA ’98). IEEE Com-
puter Society, Washington, DC, USA, 195–. http://dl.acm.org/citation.
cfm?id=822079.822729

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. 2001. MiBench: A free, commercially repre-
sentative embedded benchmark suite. In Proceedings of the Work-
load Characterization, 2001. WWC-4. 2001 IEEE International Work-
shop. IEEE Computer Society, Washington, DC, USA, 3–14. https:
//doi.org/10.1109/WWC.2001.15

[12] Lance Hammond, Mark Willey, and Kunle Olukotun. 1998. Data spec-
ulation support for a chip multiprocessor. In Proceedings of the Eighth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM Press, New York, NY, USA,
58–69. https://doi.org/10.1145/291069.291020

[13] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D.
Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Chris-
tos Kozyrakis, and Kunle Olukotun. 2004. Transactional Memory
Coherence and Consistency. In Proceedings of the 31st Annual Inter-
national Symposium on Computer Architecture. http://dl.acm.org/

citation.cfm?id=998680.1006711
[14] John L. Henning. 2000. SPEC CPU2000: Measuring CPU Performance

in the New Millennium. Computer 33, 7 (July 2000), 28–35. https:
//doi.org/10.1109/2.869367

[15] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Comput. Archit. News 34, 4 (Sept. 2006), 1–17. https:
//doi.org/10.1145/1186736.1186737

[16] Jialu Huang, Arun Raman, Yun Zhang, Thomas B. Jablin, Tzu-Han
Hung, and David I. August. 2010. Decoupled Software Pipelining
Creates Parallelization Opportunities. In Proceedings of the 2010 Inter-
national Symposium on Code Generation and Optimization.

[17] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and
Daniel Sanchez. 2015. A Scalable Architecture for Ordered Paral-
lelism. In Proceedings of the 48th International Symposium on Mi-
croarchitecture (MICRO-48). ACM, New York, NY, USA, 228–241.
https://doi.org/10.1145/2830772.2830777

[18] Nick P. Johnson. 2015. Static Dependence Analysis in an Infrastruc-
ture for Automatic Parallelization. Ph.D. Dissertation. Department of
Computer Science, Princeton University, Princeton, New Jersey, United
States.

[19] Ken Kennedy and John R. Allen. 2002. Optimizing compilers for mod-
ern architectures: a dependence-based approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[20] Hanjun Kim. 2013. ASAP: Automatic Speculative Acyclic Paralleliza-
tion for Clusters. Ph.D. Dissertation. Department of Computer Science,
Princeton University, Princeton, New Jersey, United States.

[21] Hanjun Kim, Nick P. Johnson, Jae W. Lee, Scott A. Mahlke, and David I.
August. 2012. Automatic Speculative DOALL for Clusters. Inter-
national Symposium on Code Generation and Optimization (CGO)
(March 2012).

[22] Hanjun Kim, Arun Raman, Feng Liu, Jae W. Lee, and David I. August.
2010. Scalable Speculative Parallelization on Commodity Clusters. In
Proceedings of the 43rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO).

[23] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. 2009. McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore and Manycore
Architectures. In Proceedings of the 42Nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 42). ACM, New York,
NY, USA, 469–480. https://doi.org/10.1145/1669112.1669172

[24] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P.
Jouppi. 2011. CACTI-P: Architecture-level Modeling for SRAM-
based Structures with Advanced Leakage Reduction Techniques. In
Proceedings of the International Conference on Computer-Aided De-
sign (ICCAD ’11). IEEE Press, Piscataway, NJ, USA, 694–701. http:
//dl.acm.org/citation.cfm?id=2132325.2132479

[25] Taewook Oh, Stephen R. Beard, Nick P. Johnson, Sergiy Popovych,
and David I. August. 2017. A Generalized Framework for Automatic
Scripting Language Parallelization. In Proceedings of the 2016 Interna-
tional Conference on Parallel Architectures and Compilation (PACT

’17).
[26] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. Au-

gust. 2005. Automatic Thread Extraction with Decoupled Software
Pipelining. In Proceedings of the 38th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 105–118. https:
//doi.org/10.1109/MICRO.2005.13

[27] Milos Prvulovic, Marı́a Jesús Garzarán, Lawrence Rauchwerger, and
Josep Torrellas. 2001. Removing architectural bottlenecks to the scala-
bility of speculative parallelization. In Proceedings of the 28th Annual
International Symposium on Computer Architecture. ACM Press, New
York, NY, USA, 204–215. https://doi.org/10.1145/379240.379264

[28] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. 2005. Virtualizing
Transactional Memory. In Proceedings of the 32nd International Sym-
posium on Computer Architecture. 494–505.

[29] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and
David I. August. 2010. Speculative Parallelization Using Software
Multi-threaded Transactions. In Proceedings of the Fifteenth Inter-
national Symposium on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS).

[30] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew Bridges,
and David I. August. 2008. Parallel-Stage Decoupled Software Pipelin-
ing. In Proceedings of the Annual International Symposium on Code
Generation and Optimization (CGO).

[31] Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smruti R. Sarangi,
James Tuck, and Josep Torrellas. 2006. Energy-Efficient Thread-Level
Speculation. IEEE Micro 26 (2006), 80–91. Issue 1.

[32] Jose Renau, James Tuck, Wei Liu, Luis Ceze, Karin Strauss, and Josep
Torrellas. 2005. Tasking with Out-of-order Spawn in TLS Chip Mul-
tiprocessors: Microarchitecture and Compilation. In Proceedings of
the 19th Annual International Conference on Supercomputing (ICS

’05). ACM, New York, NY, USA, 179–188. https://doi.org/10.1145/
1088149.1088173

[33] G. S. Sohi, S. Breach, and T. N. Vijaykumar. 1995. Multiscalar Proces-
sors. In Proceedings of the 22th International Symposium on Computer
Architecture.

[34] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. 2000. A
Scalable Approach to Thread-Level Speculation. In Proceedings of the
27th International Symposium on Computer Architecture. 1–12.

[35] J. Gregory Steffan and Todd C. Mowry. 1998. The Potential for Using
Thread-Level Data Speculation to Facilitate Automatic Paralleliza-
tion. In Proceedings of the 4th International Symposium on High-
Performance Computer Architecture. 2–13.

[36] P. Sweazey and A. J. Smith. 1986. A Class of Compatible Cache Consis-
tency Protocols and Their Support by the IEEE Futurebus. In Proceed-
ings of the 13th Annual International Symposium on Computer Archi-
tecture (ISCA ’86). IEEE Computer Society Press, Los Alamitos, CA,
USA, 414–423. http://dl.acm.org/citation.cfm?id=17407.17404

[37] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. 2007.
A Practical Approach to Exploiting Coarse-Grained Pipeline Paral-
lelism in C Programs. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 356–369.
https://doi.org/10.1109/MICRO.2007.7

[38] William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002.
StreamIt: A Language for Streaming Applications. In Proceedings of
the 12th International Conference on Compiler Construction.

[39] Neil Vachharajani. 2008. Intelligent Speculation for Pipelined Mul-
tithreading. Ph.D. Dissertation. Department of Computer Science,
Princeton University, Princeton, New Jersey, United States.

[40] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges,
Guilherme Ottoni, and David I. August. 2007. Speculative Decoupled
Software Pipelining. In PACT ’07: Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation Techniques.
IEEE Computer Society, Washington, DC, USA, 49–59.

[41] T.N. Vijaykumar, S. Gopal, James E. Smith, and Gurindar Sohi. 2001.
Speculative Versioning Cache. IEEE Transactions on Parallel and
Distributed Systems 12, 12 (2001), 1305–1317. https://doi.org/10.
1109/71.970565

[42] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. 1998. A Unified
Approach to Speculative Parallelization of Loops in DSM Multiproces-
sors. Technical Report.

