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Abstract
Program specialization optimizes a program with respect to pro-
gram invariants, including known, fixed inputs. These invariants
can be used to enable optimizations that are otherwise unsound. In
many applications, a program input induces predictable patterns of
values across loop iterations, yet existing specializers cannot fully
capitalize on this opportunity. To address this limitation, we present
Invariant-induced Pattern based Loop Specialization (IPLS), the
first fully-automatic specialization technique designed for everyday
use on real applications. Using dynamic information-flow track-
ing, IPLS profiles the values of instructions that depend solely on
invariants and recognizes repeating patterns across multiple itera-
tions of hot loops. IPLS then specializes these loops, using those
patterns to predict values across a large window of loop iterations.
This enables aggressive optimization of the loop; conceptually, this
optimization reconstructs recurring patterns induced by the input
as concrete loops in the specialized binary. IPLS specializes real-
world programs that prior techniques fail to specialize without re-
quiring hints from the user. Experiments demonstrate a geomean
speedup of 14.1% with a maximum speedup of 138% over the orig-
inal codes when evaluated on three script interpreters and eleven
scripts each.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers, Optimization

General Terms Design, Languages, Performance

Keywords Loop specialization, Partial evaluation, Profile based
optimization, Program specialization

1. Introduction
Conventional compilers apply optimizations with guarantees of
correctness for all valid program inputs [1]. Even if the program
input is known at compile-time, the compiler cannot take full ad-
vantage of optimization opportunities specific to the program input.
Program specialization exploits these opportunities by optimizing
a program with respect to a static input that is fixed across all in-
vocations of the program. Static instructions—those which depend
solely on static input or program invariants—always produce the
same values across multiple program executions. A compiler gener-
ates a specialized program by replacing static instructions with the
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precomputed values and by residualizing dynamic instructions—
those which may depend on some non-static inputs. By evaluating
static instructions at compile-time, a specialized program generally
runs faster than the program generated by the input-unaware com-
piler.

In many cases, values computed by the static instructions induce
repeating patterns across loop iterations. Script interpreters exem-
plify this property: most script interpreters include an instruction
that maintains the program counter of the script. Using this instruc-
tion, the interpreter main loop determines the next instruction in
the script to dispatch. Since most scripts have loops, a value trace
of the program counter exhibits repeating patterns. When these pat-
terns are generated by static instructions, the pattern can be reliably
predicted across program runs, since no aspect of the dynamic in-
put will affect those patterns. The interpreter’s main loop can be
specialized for this pattern by first unrolling the main loop by the
length of the pattern and then optimizing each unrolled iteration
with respect to the corresponding value.

Many program specializers fail to automatically generate a spe-
cialized program that reflects the repetition inherent in the known
input. Compile-time analysis to discriminate static and dynamic in-
structions is too imprecise, thus limiting the specializer’s ability to
search for repeating patterns among static instructions and in turn
limiting application speedup. Existing specializers resort to user
annotations to identify those instructions which depend solely on
known input [2, 8, 12, 18].

Some specializers [3, 25] do not need user annotations. Instead,
they use dynamic information to identify constant or hot values and
perform specialization at runtime. However, the cost of dynamic
code generation is high. Shankar et al. create multiple specialized
instances of the loop for frequently-observed values and apply par-
tial unrolling [25]. This approach introduces dispatch conditions to
the hot loop which grow with the number of hot values. To conquer
large specialized regions, the number of dispatch conditions grows
so large as to limit application speedup.

To overcome these problems, this paper presents Invariant-
induced Pattern based Loop Specialization (IPLS). IPLS is the
first fully-automatic program specialization technique that is
applicable to several complex and widely-deployed script inter-
preters. By specializing a program at the granularity of patterns,
IPLS enables aggressive optimization across a large window of
loop iterations. The choice of patterns over hot values reduces the
dispatch overhead.

IPLS is composed of three stages: profiling, pattern detection,
and code generation. IPLS profiler identifies static instructions in
the program using dynamic information flow tracking and traces
the values computed by static instructions. IPLS pattern detector
looks for repeating patterns across different iterations in the value
trace, which are characteristics of the static instructions. IPLS code
generator specializes the program with respect to the detected pat-
tern by unrolling the loop by the length of the pattern and special-



izing each unrolled iteration to the corresponding value from the
pattern.

The performance of IPLS is evaluated using the following set
of open-source C programs: the Lua script interpreter [17], the Perl
script interpreter [22], and the Python script interpreter [23]. These
programs are non-trivial and widely deployed. IPLS automatically
specializes these applications and achieves a geomean speedup of
14.1% while increasing program size only by 7.0%. To the best of
our knowledge, IPLS is the first program specialization technique
that profitably specializes all of these script interpreters.

The primary contributions of this work are:

• The first fully-automatic technique powerful and robust enough
to specialize complex applications such as the Perl, Python and
Lua interpreters;
• Profiling and analysis to identify fixed input-driven patterns

across loop iterations; and,
• Implementation and evaluation on real-world applications.

2. Motivation
Compilers conservatively optimize programs for all valid inputs
to guarantee correctness, even though some inputs are effectively
invariant. To achieve greater optimization, program specialization
allows a compiler to optimize a target program against a specific
static input. Here, the target program is the program for a special-
izer to optimize, and static inputs are the inputs that are unchanged
across program invocations. Dynamic inputs are all other inputs;
the specializer assumes that dynamic inputs may change across in-
vocations.

2.1 Example: Script Interpretation
Script interpretation is a key application domain for program spe-
cialization [14]. A script interpreter executes the same script mul-
tiple times with different inputs. Since the script is an input to the
interpreter, and it is often reused without a change, the interpreter
and the script can be considered as a target program and a static
input. The inputs to the script are dynamic inputs. If the script is
repeatedly executed, program specialization can optimize the in-
terpreter against the script creating an interpreter which performs
better on that script. This accelerates future runs of the script.

Figure 1 illustrates how a script interpreter is specialized for
a script. The interpreter has a main loop that reads, parses and
executes instructions such as ADD and FOR. The script has a loop
that accumulates values from zero to the dynamic input value. Due
to the loop in the script, the main loop of the interpreter iterates
over the same sequence of values (i.e. instructions from the script)
multiple times. As shown in Figure 1(b), the same code blocks are
executed repeatedly to create an input-driven loop.

A program specializer can specialize the interpreter for the
input-driven loop of the repeated operations. As Figure 1(c) illus-
trates, the specializer detects the repeated pattern induced by the
static input, and creates a customized loop optimized for the re-
peating values in OPC (i.e. FOR and ADD). By stitching several it-
erations into a sequence, many bookkeeping instructions become
unnecessary and can be removed by later optimization. The final
specialized interpreter is shown in Figure 1(d), and the new spe-
cialized program reflects the loop structure within the script.

2.2 Benefits of Pattern based Loop Specialization
Existing fully-automatic program specializers fail to effectively
specialize programs with input-driven loops. For example, the spe-
cializer proposed by Bala et al. [3] creates only one specialized
loop for each hot loop of the program and does not optimize the
loop across iteration boundaries. If their specializer is used for the

(a)	  

. . .

(b)	  

for ( ;; ) { 
ORG: 
  OPC = BYTECODES[pc];   
  if(OPC==ADD) goto ADD; 
  // original loop body 
} 
… 
ADD: 
  handle_add(…); 
  p = handle_for(…); 
  if (p) 
    goto ADD; 
  else 
    pc = NOT_TAKEN; 
    goto ORG; 
 Specialized	  Program	  (Interpreter’)	  

argv[1] = NUM 

Dynamic	  Input	  
(Input	  to	  Script)	  

(d)	  

OPC = BYTECODES[pc];  // OPC==ADD 
handle_add(…); 
pc++; 

OPC = BYTECODES[pc];  // OPC==FOR 
p = handle_for(…); 
if (p) pc = TAKEN; 

OPC = BYTECODES[pc];  // OPC==ADD 
handle_add(…); 
pc++; 

OPC = BYTECODES[pc];  // OPC==FOR 
p = handle_for(…); 
if (p) pc = NOT_TAKEN; 

OPC = BYTECODES[pc];  // OPC==PRT 
handle_prt(…); 

OPC = BYTECODES[pc];  // OPC==FOR 
p = handle_for(…); 
if (p) pc = TAKEN; 

ADD:   
  OPC = BYTECODES[pc]; 
  handle_add(…); 
  pc++; 
  goto FOR; 

for ( ;; ) { 
ORG: 
  OPC = BYTECODES[pc];   
  if( OPC == ADD ) goto ADD; 
  // original loop body 
} 

(c)	  

FOR:   
  OPC = BYTECODES[pc]; 
  p = handle_for(…); 
  if (p) {  
    pc = TAKEN; goto ADD;  
  } 
  else { 
    pc = NOT_TAKEN; goto ORG;  
  } 

Dynamic	  Input	  
(Input	  to	  Script)	  

for ( ;; ) { 
  OPC = BYTECODES[pc]; 
  switch (OPC) { 
    CASE ADD: 
      handle_add(…); 
      pc++; 
    CASE FOR: 
      p = handle_for(…); 
      if (p) pc = TAKEN; 
      else   pc = NOT_TAKEN;  
    … 
  } 
} Program	  (Interpreter)	  

Sta*c	  Input	  (Script)	  

argv[1] = NUM 

sum = 0, i = 0 
for i to argv[1] // FOR 
  sum += i       // ADD 
print sum        // PRT 

Figure 1. A static input script induces a repeating pattern in vari-
able OPC. The interpreter can be specialized with respect to the
input script by exploiting this repetition: (a) program, static and
dynamic inputs, (b) trace of recurring values across loop iterations,
(c) loop iterations stitched into a specialized loop, (d) final special-
ized code.

example program in Figure 1, it would create a specialized loop for
the case of either OPC==ADD or OPC==FOR, but not both.

Shankar et al. overcome this limitation by creating a specialized
loop for each of the hot values observed in the original loop [25].
When applied to the program in Figure 1, they create two special-
ized loops: for both OPC==ADD and OPC==FOR. However, this ap-
proach suffers from dispatching overhead proportional to the length
of the input-driven loop. Although the input-driven loop in the
script in Figure 1(c) has a length of only two (with ADD and FOR),
it can be much longer in general. Inserting dispatch instructions for
each of the repeating values can incur significant control-flow over-
head. A specializer may impose an upper bound on the maximum
number of the input-driven loop to limit the control-flow overhead,
but only at the cost of lost specialization opportunities. Unlike these
approaches, IPLS streamlines the execution of multiple iterations
in the original loop associated with a pattern by maintaining one
dispatch condition for each specialized pattern.

Another issue with the previous approaches is frequent exits
from specialized codes. Figure 2 shows a script with skewed ex-
ecution paths. The path with {FOR, IF, SUB} will be taken
more frequently than that with {FOR, IF, ADD}. A hot-value
based specializer may classify FOR, IF, and SUB as hot, but not
ADD. Since it does not generate a specialized loop for OPC==ADD,
it jumps back to the original dispatch routine when the next OPC
value is ADD. In the next iteration it will jump back to the special-



Sta$c	  Input	  

sum = 0, i = 0 
for i to argv[1]      // FOR 
  if rand() % 4 == 1  // IF 
    sum += i          // ADD 
  else 
    sum -= i          // SUB 
print sum             // PRT 

Figure 2. An input script featuring biased control flow.

ized loop for OPC==FOR. As a result, the specializer introduces
unnecessary back-and-forth transfers of program control between
the specialized loop and the original loop. IPLS avoids this prob-
lem by capturing the pattern of {FOR, IF, ADD|SUB} using a
loop detection algorithm and generating specialized codes with re-
spect to this pattern. Specializing less-frequently-taken paths in an
input-driven loop may increase the code size, but our evaluation
shows that increase in binary size is moderate.

3. Overview of IPLS
This section describes IPLS using a simple script interpreter and
an input script as an example. Figure 3(c) shows the control flow
graph (CFG) representation of the main loop of the interpreter
for a simple script language and Figure 3(b) is an input script to
that interpreter. The input script is transformed into a sequence of
opcodes: FOR, ADD, and PRT. The interpreter’s main loop fetches
an opcode, branches to the corresponding opcode handler, and
repeats. If the input script executes many times, specializing the
interpreter with respect to the input script will be highly beneficial.

In Figure 3(c), basic blocks A, B, C, D, ADD, MUL,
FOR and PRT compose the main loop while PRE is a preheader
block. Individual instructions of the basic blocks are expressed in
a medium-level compiler intermediate representation. In the loop
header block A, OP loads the next opcode from address ADDR. The
next opcode is fetched into OP and the interpreter branches to the
basic block corresponding to the opcode: if the value of OP is FOR,
the interpreter jumps to the basic block FOR, and so on. The value
of ADDR comes either from the loop preheader PRE when the loop
is invoked, or from basic block D through the loop backedge.

The workflow of IPLS consists of three stages as depicted in
Figure 3(a): profiling, pattern detection and code generation. The
rest of this section will provide a high-level overview of these
three stages using the example interpreter and script. Figures 3(d)
through (f) show the output of each stage while IPLS specializes
the interpreter.

3.1 Profiling
The first stage of IPLS is profiling. The profiler instruments the
target program and runs the instrumented program with the static
input. The values of the static input propagate along the data flow
of the program to identify some instructions as static. A static
instruction always produces the same value since it depends only
on program invariants including the static input, hence can be
precomputed at compile-time.

The goal of the profiling stage is to identify static instructions
and the values they compute, thus enabling aggressive constant
propagation and control flow optimization in the later stages. To-
wards this goal the profiled executable collects the following infor-
mation:

• Values computed by the static instructions for each iteration of
the loop;

• Address-value pairs for static load instructions (a load instruc-
tion is static if the result of the load is computed from a static
instruction);
• A set of distinct control-flow paths through each iteration of the

loop;
• The number of instructions affected by each static instruction

in an iteration; and
• Addresses of all basic blocks within the loop and all functions

within the program.

To find static instructions within the program precisely with-
out user annotations and/or heroic static analysis, IPLS employs
Dynamic Information Flow Tracking (DIFT) [26]. The only infor-
mation required from the user is which program inputs IPLS may
assume fixed across different executions. For example, a user sim-
ply directs a script is a fixed input to the interpreter, but inputs to
the script are not. This information is propagated along the data
flow of the program by instrumented instructions, hence it is possi-
ble to decide whether each instruction depends only on static input.
Implementation details will be discussed in Section 4.

Figure 3(d) depicts the results of profiling for the example
program in Figure 3(c). Since ADDR points to an opcode derived
from the static input script throughout execution, both ADDR and
OP are classified as static. Therefore, the values of ADDR and OP are
traced every iteration. The basic blocks executed in each iteration
are also traced as represented by black boxes in Figure 3(d). The
values of ADDR and OP constitute an address-value pair of the
static load instruction for each iteration. For example, during the
first iteration, the address-value pair is <P, ADD> since the value
of ADDR equals to P and the value of OP to ADD.

3.2 Pattern Detection
The pattern detection stage interprets profiling results to identify
repeating patterns of values computed by static instructions. Such
a repeating pattern suggests the existence of an input-driven loop.
One can customize this input-driven loop via constant propagation
and control flow optimization to generate a specialized loop that
efficiently executes those iterations covered by the pattern.

Since there are multiple static instructions within the loop, the
patterns they generate may suggest multiple ways to specialize
the loop. In Figure 3(d), two static instructions generate two pat-
terns (ADDR = [P, P+1] and OP = [FOR, ADD]). These
two patterns are of the same length, and produce the same control
flow pattern, though this is generally not the case. The specializer
frequently must select among several specialization strategies using
heuristics described in Section 5.

The pattern detector’s choice of pattern for specialization deter-
mines the dispatching instruction, i.e. the static instruction whose
value will control the path taken during each iteration. While ex-
ecuting the loop, if the dispatching instruction computes the value
at the beginning of the pattern, specialized code blocks are dis-
patched. In the example, ADDR = φ(PRE, D) is the dispatching
instruction and the pattern is ADDR = [P, P+1]. The dispatch
condition compares ADDR to P, and if equal, dispatches into spe-
cialized code.

A detected pattern can be represented as a graph called Meta-
Level Loop. Each value in the pattern, which is produced by the
dispatching instruction, corresponds to a node in the graph. The
graph has an edge if the values corresponding to the nodes are
generated from the adjacent iterations of the loop. By representing
the pattern as a graph, it is possible to capture more complex
patterns than a repeating sequence of values.

In addition, the pattern detection stage also outputs information
about heap constants by analyzing the address-value pairs of static



ADDR	  ==	  P	  

ADDR	  !=	  P	  

ADDR	  !=	  P	  

ADDR	  ==	  P	  

P	  

P+1	  

ADDR=P	  	  
OP=ADD	  

ADDR=P+1	  	  
OP=FOR	  

ADDR=P	  	  
OP=ADD	  

ADDR=P+1	  
OP=FOR	  

ADDR=P	  	  
OP=ADD	  

ADDR=P+1	  	  
OP=FOR	  

ADDR=P+2	  	  
OP=PRT	  
…
	  

Nodes	  

Value	   Basic	  blocks	  

P	   A	  ADD	  D	  

P+1	   A	  FOR	  B	  C	  D	  

Edges	  

Src	   Dst	  

P	   P+1	  

P+1	   P	  

Dispatch	  Condi2on	  

ADDR	  ==	  P	  

Address	   Value	  

P	  	   ADD	  

P+1	   FOR	  

Meta-‐Level	  Loop	  

Heap	  Constants	  

Profiler 
(Section 4) 

Pattern 
Detector 

(Section 5) 

Code 
Generator 
(Section 6) 

Trace 

Pattern 
Information 

Heap 
Constants 

Target  
Program 

Program 
Input 

Specialized 
program 

(a) IPLS Workflow	


(c) Interpreter CFG	
 (d) Profile Result	
 (e) Pattern Detector Output	

(f) Specialized Interpreter	


CFG	


(b) Input Script	


CFG	  

sum = 0, i = 0 
for i to argv[1] // FOR 
  sum += i       // ADD 
print sum        // PRT 

B	   C	  

D	  

ADD	   MUL	   FOR	   PRT	  

PRE	  

A	  

ADDR=Φ(PRE,	  D)	  
OP=*ADDR	  
switch(OP)	  

P	  

P+1	  

Figure 3. IPLS Specialization: (a) the high-level structure of IPLS, (b) a fixed, static input script, (c) CFG of a script interpreter, (d) result
of profiling, including a pattern of static values and their associated iteration control traces, (e) result of pattern detection, and (f) the loop
produced by code generation.

load instructions taken in the profiling stage. IPLS assumes that,
if the value v corresponding to the address a is identical across
the all address-value pairs and the pair of 〈a, v〉 appeared more
than twice, address a holds a constant value v. The code generator
specializes a program using this information about heap constants.
For example, the static load instruction OP=*ADDR in Figure 3(d)
always loads ADD at address P and FOR at address P+1, so the two
heap constants are passed to the code generator.

Figure 3(e) shows the output of the pattern detection stage. A
meta-level loop describes the pattern induced by the instruction
ADDR = Φ(PRE, D), with two nodes P, P+1 and two edges
(P, P+1), (P+1, P). The code specialized with respect to
this meta-level loop will be dispatched if the value of ADDR be-
comes P. Each node contains a set of basic blocks which are in-
voked while tracing the node. If different iterations generating the
same value invoke different basic blocks, basic block information
stored in the meta-level loop takes a union of them. For example,
in Figure 3(d), two iterations generating value P+1 invoke basic
blocks {A, FOR, B, D}, while the other invokes {A, FOR,
C, D}. Therefore, a union of those two is reported as basic blocks
corresponding to the value P+1 in the meta-level loop. The code
generator uses this basic block information when creating code
blocks specialized for the corresponding value.

3.3 Code Generation
The code generation stage creates specialized codes for each meta-
level loop identified in the pattern detection stage. It duplicates the

original loop for each node in the meta-level loop and specializes
the duplicated loop with respect to the value corresponding to the
meta-level node. The code generator also inserts instructions to
dispatch the specialized codes.

IPLS specializes a loop by first creating a special version for
each iteration (meta-level node). When IPLS duplicates and spe-
cializes a loop iteration, it duplicates only those basic blocks listed
in the meta-level node. This not only serves to minimize code
growth caused by specialization, but also simplifies the control flow
of the specialized loop. These simplifications enable more instruc-
tion level parallelism in a meta-level node.

The code generator then inserts branch instructions to link mul-
tiple specialized iterations into a specialized meta-level loop. In
the example, it adds branches from the end of the specialized loop
for ADDR == P to the head of the specialized loop for ADDR ==
P+1 and vice versa, reflecting the two meta-level loop edges (P,
P+1) and (P+1, P).

These branches are unconditional if both of the following con-
ditions are met. First, the next iteration must execute. Second, the
value computed by the dispatching instruction of this meta-level
loop is equal to the value that the next meta-level loop node is spe-
cialized for. For example, a branch from the specialized loop for
node P to node P+1 will be an unconditional jump, if it is guar-
anteed at the end of the specialized loop for node P that the loop
executes at least one more iteration and that the value of ADDR will
be P+1 at the following iteration.



If these conditions cannot be guaranteed at specialization time,
the branch must be conditional. For example, at the end of the spe-
cialized loop for node P+1, if the value of ADDR for the next in-
struction is only known at runtime, a conditional branch instruction
whose predicate value is ADDR == Pwill be inserted to reflect the
meta-level loop backedge from node P+1 to node P.

The code generator also exploits heap constants to perform spe-
cialization across load instructions. For example, when specializing
the duplicated loop with respect to the value P of ADDR in Figure 3,
no further specialization is possible without the information that
address ADDR holds a heap constant value ADD. Since information
about heap constants is acquired by profiling, IPLS inserts instruc-
tions to verify the assumed constant value against actually loaded
values into the specialized code. This information breaks depen-
dences between the load instruction and its users, hence exposing
additional instruction-level parallelism.

Together with address information about basic blocks and func-
tions provided by the profiler, information about heap constants is
used to specialize indirect branches and indirect function calls. If
a branch/function call target address is derived solely from a heap
constant and the address matches the starting address of a basic
block or function in the program, an indirect branch/function call
can be replaced by a direct branch/function call to the target ad-
dress. This replaced branch/function call is guarded by a compari-
son instruction to confirm the heap constant value. This transforma-
tion potentially reduces pipeline stalls by simplifying the program’s
control flow.

Figure 3(f) depicts the structure of the final optimized code af-
ter specialization guided by the meta-level CFG and heap constants
in Figure 3(e). The main loop of the original interpreter (top white
box) dispatches the specialized meta-level loop when the value of
ADDR is equal to P. Specialized codes (round dotted box) are cre-
ated by duplicating the original main loop twice for each meta-level
loop node and specializing each of them using information about
meta-level CFG and heap constants. Only necessary basic blocks
(colored black) are duplicated during specialization. Under the as-
sumption that the value of ADDR of next iteration is guaranteed to
be P+1 at the end of the specialized loop for node P, the branch
from node P to P+1 is unconditional. However, branch from node
P+1 to P is conditional because the value of the ADDR for the next
iteration cannot be determined statically at the end of the special-
ized loop for node P+1.

4. Profiling
The profiling stage of IPLS collects information to enable the
compiler to specialize the program with respect to a given static
input. As described in Section 3.1, the IPLS profiler performs a
variation of value profiling, load profiling, and path profiling.

Two optimizations distinguish the IPLS profilers from related
techniques: (i) the IPLS profiler restricts its observations to static
instructions, and (ii) it restricts the scope of value profiling to oper-
ations within the header of the target loop. These restrictions limit
profiling results to safe specialization assumptions, yet provide in-
formation strong enough to support aggressive program specializa-
tion. The insight that allows these optimizations is that a specializer
may only transform according to static program values, and that
the dispatch condition (Section 5) must be computable at the start
of every iteration.

Before profiling, the user marks some portion of the program
input as static, such as the input script of an interpreter. We say
an instruction is static if all of its operands (including values read
from memory) are static values. If an instruction is static, then the
sequence of values which that instruction generates during pro-
gram execution is invariant across program executions. This prop-
erty makes static instructions good candidates for program special-

FILE* fp = fopen(argv[1], ‘r’);!
!
…!
fread(buf, 1, size, fp);!
!
!
…!

OP = *ADDR;!
metadata_op = *(metadata_addr);!
if (metadata_op == 1)!
  printLoadTrace(…);!
switch (OP) {!
  …!
}!

metadata_fp = metadata_argv[1];!

metadata_fread = metadata_size & metadata_fp;!
memset(metadata_buf, metadata_fread, size*1);!

(a) Instrumented code that reads input	


(b) Instrumented code that uses input	


Figure 4. Instrumentation added by the IPLS profiler to achieve
dynamic information-flow tracking.

ization. The IPLS profiler only collects information pertaining to
static inputs. By employing DIFT, IPLS collects information re-
lated only to the static input, obviating the need for heroic static
analysis.

DIFT tags each intermediate value in the program as either
static or dynamic. Profiling instrumentation propagates these tags
along the original data flow of the program. To improve DIFT
precision, the profiler tracks information flows along register or
memory data dependences, but optimistically ignores information
flows which potentially occur along control dependences. As a con-
sequence, our implementation may report an instruction as static
when a conservative implementation would report that values as
dynamic (whether or not it actually is dynamic). This improved
precision is desirable, since it allows IPLS to perform value pro-
filing on instructions which are likely to be static, thus increasing
applicability in difficult benchmarks. The trade-off is the risk that
specialization will attempt to predict a dynamic value, with no guar-
antee that the its sequences of values are invariant across program
executions.

Incorrectly tagged values have no effect on overall correctness
of the specialization procedure, and in practice have minimal effect
on IPLS’ ability to correctly predict value sequences. There are a
few reasons for this. First, IPLS code generation inserts pattern pre-
diction routines at the position of the original hot loop. By virtue of
this position, IPLS pattern prediction only executes in cases where
the control precondition of the original hot loop is satisfied. This
control precondition implies many of the control preconditions of
dynamic values in the program, making them effectively static with
respect to that position in the program. In the worst case, code
generation guarantees safety by falling through to the general loop
when all dispatch conditions fail. Mispredictions prevent the gen-
eral loop from dispatching into the specialized loop, resulting in
a lost optimization opportunity (Section 6). Experimental results
indicate that sequence prediction is robust and that sequence mis-
prediction has negligible effect on the performance of specialized
applications (Section 7).

To support the pattern detector (Section 5), the IPLS profiler
performs value profiling on candidate dispatch conditions. The
value profiler only observes static instructions in the loop header.
The dispatch condition must be computable during every iteration
of the loop, and all static operations within the loop header satisfy
this constraint. This restriction greatly reduces the amount of data



Specialized	  	  
Loop	  

printLoadTrace(char* ptr, long val) {!
  AU* au = getAllocationUnit(ptr);!
  offset = ptr – (au->Address); !
  printSymbolicTrace(au, offset, val);!

}!

Inst.	  ID	   Invoca4on	   Address	   Size	  

…	   …	   …	   …	  

INn! IVn! P0! Sn!

…	   …	   …	   …	  

…!
!
INn: mem = malloc(size);!
     !
!
…!

cnt = load INn_cnt !

alloc_profile(INn, cnt, mem, size)!
store (cnt+1), INn_cnt!

Profiler	   Specialized	  Program	  

…!
     cnt = load INn_cnt!
INn: mem = malloc(size);!
     if (cnt == IVn)!
       P0’ = mem!
     store (cnt+1), INn_cnt!
…!

…          (P0’+offset)!
if ADDR == (P)!
  goto spec_code!
…!

A	  

D	  
B	  C	  

DISPATCH 

(a) Instrumented memory allocation instruction	


(b) Allocated object information	


(c) Profile information printer	


(d) Memory allocation instruction in specialized code	


(e) Dispatch condition checker using symbolic address	


Figure 5. IPLS uses object-relative memory profiling to generate repeatable, symbolic names for relocatable addresses. Variable INn cnt
maintains the invocation count of the instruction INn.

collected, and in turn reduces the processing overhead of the pattern
detector. As a corollary, later analysis of profiling results is insen-
sitive to limited profile coverage, since it ignores operations which
do not execute at least once per loop iteration. Note, however, that
load profiling is still performed on all static loads within the loop,
not only those from the header.

Figure 4 shows the instrumentation to track dynamic informa-
tion flow. Figure 4(a) is the part of the program which reads the in-
put file specified by the first command line argument. Figure 4(b) is
the part which uses the input. ADDR in Figure 4(b) points to each el-
ement of buf in Figure 4(a) through its execution, hence OP loads
the value read from the input file. Bold and italicized lines are the
instructions automatically instrumented by the compiler for tracing
metadata and printing profile information.

The code snippet shows that metadata of argv[1] is propa-
gated to the metadata of OP, through the instrumented instructions.
The profiler reports the information related to OP only if its meta-
data set to 1 meaning the value is static, which is true only when
the metadata of argv[1] is 1. Metadata of command line inputs,
which indicates whether the input is static or not, is given by the
user.

Since instrumentation is added at an intermediate representa-
tion level, instrumentation is not possible of functions whose source
code is not available at specialization time. For this reason, tracing
the flow of metadata across standard library calls are handled ex-
ceptionally via custom information flow tracking instructions. For
example, Figure 4(a) shows custom tracking instructions for calls
to fopen and fread.

Another issue of the IPLS profiler is profiling of pointer val-
ues. Recall the example in Figure 3 that the dispatch condition of
the specialized code was ADDR == P. However, the value P is a
memory address, and there is no guarantee that the absolute pointer
value P is consistent across across multiple executions of the spe-
cialized program. To address this problem, IPLS performs a vari-
ation of object-relative memory profiling [27] to derive consistent
symbolic names for such pointers.

The IPLS profiler uses symbolic addresses instead of absolute
numbers. A symbolic address is a tuple of (instruction ID, invo-
cation counter, offset). Instruction ID is an unique static ID of the

memory allocation instruction that allocates the object pointed by
the address, and invocation counter means the number of invoca-
tions of the instruction with instruction ID when the object is allo-
cated. offset refers to the offset from the base of the object.

Figure 5 describes how the object-relative memory profiling is
performed in IPLS. During the execution, the IPLS profiler traces
every memory allocation instructions. Figure 5(a) shows the instru-
mentation to trace memory allocation in bold and italic. For every
invocation of memory allocation instruction, alloc profile
function call is followed to trace the unique instruction ID of the
memory allocation instruction, its invocation counter, start address
and size of the allocated object. Traced information is maintained
as a table shown in Figure 5(b).

When the profiler outputs the information related to a pointer,
it prints the symbolic address tuple instead of absolute number by
referring the table. For example, to trace the pointer P, which is
in range of [P0, P0 + Sn), the profiler finds the corresponding
instruction ID and the invocation counter for the object pointed by
P using the table (INn and IVn for the example in the figure),
calculates the offset, and prints those numbers as described in
Figure 5(c).

Figure 5(e) shows the use of symbolic address on the specialized
program side. Instead of using the absolute value of pointer P
to check the dispatch condition of the specialized loop, it uses
a value P0’ + offset which is generated from the symbolic
address: P0’ comes from the IVn-th invocation of instruction
with ID INn, and value offset directly comes from the output
of the profile. In order to get the value of P0’ while executing
the specialized program, instrumentation is added to the memory
allocation instruction INn, as shown in Figure 5(d).

5. Pattern Detection
The IPLS pattern detector analyzes profiling information to identify
specialization opportunities. The output of this stage includes meta-
level loops which represent repeating patterns within the traced
values computed by static instructions, and possible heap constants
extracted from the trace of static load instructions.



In addition to the meta-level loop, the pattern detector uses the
meta-level trace to represent the repeating patterns in the program.
While the meta-level loop represents patterns across multiple iter-
ations of a single invocation of a loop, the meta-level trace repre-
sents patterns across multiple invocations of the loop. Figure 6(a)
shows a summarized trace of values generated by a static instruc-
tion in a loop across multiple invocations. For the first and second
invocations of the loop, the loop iterates for 8 times before it ter-
minates, and for the third invocation it runs for only four iterations.
Across first and second invocation of the loop, the static instruction
computes exactly the same sequence of values. Therefore, the spe-
cializer can exploit patterns which emerge across the invocations
along with the patterns detected across the iterations of a single
invocation.

In order to find a meta-level loop or meta-level trace from
a given trace of values, the pattern detector first transforms the
sequence of trace values into a graph: each traced value becomes a
node of the graph, and edges are added between two values adjacent
in the trace. Figure 6(b) depicts a graph generated from the trace in
Figure 6(a).

To detect a meta-level loop, IPLS runs a natural loop detection
algorithm on the graph built from the trace. In the example of
Figure 6(b), an edge from node d to node b forms a backedge
because its destination node dominates its source node, and a meta-
level loop including nodes b, c, e, and d can be detected. The
dispatch condition for the specialized loop for the meta-level loop
is met if the computed value of the static instruction whose profiled
values induce the meta-level loop matches the value of the loop
header.

Meta-level traces are created by merging all iteration traces that
share the same value for the first iteration. The dispatch condition
for the specialized codes for a meta-level trace is determined by
the common value from the first iterations. Since the traces of
the three invocations shown in Figure 6(a) share the same value
a generated from the first iteration, Figure 6(b) can be a meta-
level trace. However, if the value diverges after the first iteration
for different invocations, and some of them appear with a very low
probability across invocations, specialized loops for those values
will merely increase the program size without much benefit. To
prevent this case, only the trace of invocations which share an
identical iteration trace are included in the meta-level trace. In
Figure 6(a), traces of the first and second invocations are identical,
hence are combined in the meta-level trace, yet the trace of the third
invocation is excluded because there is no common trace.

At this point the pattern detector may have found several pat-
terns in the trace data. However, the loop can only be specialized
according to one pattern. To find the right pattern for specialization,
IPLS uses a heuristic based on two measures: (1) coverage of the
pattern and (2) number of the instructions affected by the static in-
struction generating the pattern. IPLS chooses the pattern for which
the product of these measures is greatest.

The coverage of the pattern is calculated by taking a ratio of the
number of iterations covered by the pattern to the total number of
iterations in the trace. This measure is related to the benefit of spe-
cialization since a higher coverage means that the specialized code
likely accelerates a greater portion of the total iterations. The pro-
filer measures the invocation count of the instructions affected by
the static instruction s. This number is related to the benefit since a
higher number implies more computation to be optimized away via
precomputation. In the example of Figure 3(d), the pattern of ADDR
= [P, P+1] and the pattern of OP = [FOR, ADD] have the
same coverage. While the instruction computing ADDR affects two
instructions (i.e., OP=*ADDR and switch(OP)), the instruction
OP=*ADDR affects only one instruction (switch(OP)). There-
fore, IPLS chooses to optimize the loop with respect to the pattern

Meta-‐level	  loop	  

Invoca.on	  

0	   1	   2	  

Iter	  0	   a! a! a!

Iter	  1	   b! b ! g!

Iter	  2	   c! c! i!

Iter	  3	   d! d! h!

Iter	  4	   b! b!

Iter	  5	   e! e!

Iter	  6	   d! d!

Iter	  7	   f! f!

f!

a!

b!

c! e!

d!

g!

i!

(a) Example trace	
 (b) Meta-level loop/trace detected���
from example trace (a)	


h!

Meta-‐level	  trace	  

Figure 6. Meta-level loops/traces detection extracts a graph which
resembles a control-flow graph in which loops are identified.

of ADDR = [P, P+1]. If the coverage of the pattern is less than
0.01, IPLS discards the pattern.

6. Code Generation
Code generation takes advantage of meta-level loop/trace informa-
tion and possible heap constant information passed by the pattern
detector to specialize codes. Specialized codes are expected to have
less computation than the corresponding original codes and be bet-
ter structured to exploit instruction-level parallelism.

Figure 7 describes how the program represented as a control
flow graph in Figure 7(a), which is taken from Figure 3(c), is spe-
cialized step by step using the information in Figure 3(e). Through-
out this section the code generation process will be explained by
walking through the figure.

Step 1: Splitting header and latch block First, IPLS splits the
original loop header block and loop latch blocks (blocks which are
the source of a loop backedge). As of now, IPLS targets only natural
loops for specialization. Natural loops can be canonicalized to have
only one backedge and only one latch block. Dispatch instructions
for specialized codes are added to the new header block, and the
new latch block becomes a point where the control flow merged
after the execution of specialized codes. Figure 7(b) shows a new
control flow graph after splitting the header and latch blocks.

As shown in the figure, φ-nodes placed in the original loop
header are moved to new header after splitting. If the dispatch in-
structions of the specialized codes depend on φ-nodes, no other
modifications are required. However, if dispatch instructions de-
pend on some other instructions, the instruction and instructions
upon which it depends must be cloned into the new header block.

Step 2: Cloning basic blocks To create versions of the loop iter-
ation corresponding to observed traces, the compiler clones basic
blocks in the nodes in a meta-level loop/trace. As described in Sec-
tion 3.3, basic blocks to be cloned for each meta-level node are
provided by the pattern detector, which is based on profiling. For
a branch instruction in a cloned block, if the original branch target
block is also cloned then the instruction is fixed to branch to the
corresponding cloned block. If not, the branch jumps to the target
block in the original loop. Figure 7(c) depicts the control flow graph
after cloning of basic blocks and adjusting branches.



(a)	
 (b)	
 (c)	


A0	  
	  

OP=*ADDR	  
if	  (OP!=ADD)	  
	  	  goto	  A’	  

D0	  

ADD0	  

D1	  

FOR1	  

B1	   C1	  

A1	  
	  

OP=*ADDR	  
if	  (OP!=ADD)	  
	  	  goto	  A’	  

(e)	
 (d)	


A0	  
	  

OP=*ADDR	  
switch(OP)	  

D0	  

ADD0	  

D1	  

FOR1	  

B1	   C1	  

A1	  
	  

OP=*ADDR	  
switch(OP)	  

if	  ADDR	  ==	  P	  
A0	  
	  

OP=*ADDR	  
switch(OP)	  

D0	  

ADD0	  

D1	  

FOR1	  

B1	   C1	  

A1	  
	  

OP=*ADDR	  
switch(OP)	  

ADDR++	  	  //	  ==	  P+1	  

goto	  A1	  

if	  ADDR	  ==	  P	  
	  	  goto	  A0	  
else	  
	  	  goto	  LATCH	  

if	  ADDR	  ==	  P	  

B	   C	  

D	  

Latch	  

ADD	   MUL	   FOR	   PRT	  

A	  

OP=*ADDR	  
switch(OP)	  

Header	  

ADDR=Φ(PRE,	  Latch)	  

PRE	  

B	   C	  

D	  

Latch	  

ADD	   MUL	   FOR	   PRT	  

A	  

OP=*ADDR	  
switch(OP)	  

Header	  

ADDR=Φ(PRE,	  Latch)	  

PRE	  

B	   C	  

D	  

ADD	   MUL	   FOR	   PRT	  

PRE	  

A	  

ADDR=Φ(PRE,	  D)	  
OP=*ADDR	  
switch(OP)	  

B	   C	  

D	  

Latch	  

ADD	   MUL	   FOR	   PRT	  

A	  

OP=*ADDR	  
switch(OP)	  

Header	  

ADDR=Φ(PRE,	  Latch)	  

PRE	  

B	   C	  

D	  

Latch	  

ADD	   MUL	   FOR	   PRT	  

Header	  

ADDR=Φ(PRE,	  Latch)	  

PRE	  

A	  

OP=*ADDR	  

A’	  

OP=Φ(A,	  A0,	  A1)	  
switch(OP)	  

Figure 7. The code generation process: (a) original loop, (b) splitting the loop header and latch, (c) cloning and specializing iterations from
a pattern, (d) adding dispatch conditions and stitching specialized iterations into a loop, and (e) adding unexpected exit conditions.

Instead of cloning basic blocks invoked in each node during pro-
filing, one alternative can be analyzing executable basic blocks for
each meta-level node and cloning all executable blocks, to mini-
mize the number of returns back to the unspecialized loop. This
happens when a branch jumps to a basic block that is never exe-
cuted during profiling. This approach makes sense because cloned
blocks for each meta-level node are specialized for a specific value
of the instruction inducing meta-level loop/trace, and specializa-
tion may mark a large portion of basic blocks within the loop as
unreachable. In practice, the analysis marks every basic block to
be executable for non-negligible cases, especially if the specialized
loop contains an inner loop. Since cloning the entire loop may lead
to code size explosion, IPLS clones the profiled basic blocks only.

Step 3: Adding dispatch instruction and meta-level edges After
cloning basic blocks for each meta-level node, dispatch instructions
are inserted at the loop header created in Step 1 to invoke the spe-

cialized loops. The pattern detector informs the code generator of a
dispatch condition for each meta-level loop and trace. Figure 7(d)
depicts the control flow edge inserted to dispatch the specialized
loop, which is taken when the value of ADDR becomes P (Actually,
the value acquired by the symbolic representation of value P is used
in dispatch instructions, as described in Section 4, but we use the
absolute value P here to simplify explanation).

Branches for meta-level edges are also added in this step. The
branches are conditioned on the dynamic value of dispatch condi-
tion. The branch at the end of block D1 in Figure 7(d) shows this.
The branch checks whether the value of ADDR will actually be P on
the next iteration. If it matches, it jumps to the specialized loop cor-
responding to the value of ADDR being P, or returns to the original
loop otherwise. If a meta-level node has multiple outgoing edges,
IPLS uses a switch statement instead of a branch.



Sometimes a simplified control flow between cloned basic
blocks makes branches for meta-level edges unconditional. The
branch added at the end of block D0 in Figure 7(d) is the case.
Since blocks A0 through D0 have a straightened control flow, and
block ADD0 contains the instruction that increases the value of
ADDR by one, so the value of ADDR for the next iteration is guaran-
teed to be P+1 at the end of D0. Therefore, without checking, the
loop specialized for the condition of ADDR == P+1 is invoked
after the execution of D0. Such simplification of the control flow
opens opportunities to exploit instruction-level parallelism across
different iterations.

Step 4: Exploiting possible heap constants As the last step of
code generation, IPLS exploits possible heap constant information.

Figures 7(d) and (e) differ in block A0, where the switch instruc-
tion has been replaced with a conditional branch. This replacement
is possible because the specializer knows (i) ADDR must point to
P and (ii) the pattern detector reports that the memory at P holds a
heap constant value ADD. However, the switch cannot be simply re-
placed by an unconditional branch. The heap constant information
is derived via profiling, which must be verified at runtime; instruc-
tions to check the validity of possible heap constant information
must remain.

Though it seems that there is no benefit by using heap constant
information in block A0, performance is improved by replacing
switch instructions (often lowered to a jump table in assembly) with
conditional branches, which improve the performance of branch
prediction. Particularly, the branch prediction is nearly perfect for
such cases since the heap constant information is generally true.
Although it is not clear in this example, heap constant information
also breaks dependences between load instruction and its uses,
because the loaded value can be safely assumed to be the expected
heap constant after the checking instruction. Breaking dependences
creates more optimization opportunities, including better chances
for instruction level parallelism.

As an alternative to checking heap constants and branching,
speculation assumes all possible heap constants. Also, instead of
inserting a comparison between the expected and actual values, it
simply logs the comparison result. Then the program occasionally
checks the logged value at runtime to see if a misspeculation has
occurred, and if so, the program rolls back to the previous check-
point of the program, where the program maintains correct state.
By removing conditional branches speculative execution opens ad-
ditional opportunities to exploit instruction level parallelism. How-
ever, the overhead of logging and periodic checking of comparison
results may negate the benefit coming from more instruction level
parallelism. In this paper, we do not use speculative techniques and
leave them for future work.

7. Evaluation
A prototype for IPLS is implemented in the LLVM compiler frame-
work [16]. We evaluate it against the following open source C
programs: a Lua script interpreter (Lua-5.2.0), a Perl script inter-
preter (Perl-5.14.2), and a Python script interpreter (Python-2.7.2).
All script interpreters first translate the given scripts into an inter-
nal intermediate representation and then execute these translated
versions. Each interpreter includes a hot loop that performs fetch-
execute cycle on the IR. IPLS specialized the fetch-execute loop in
each interpreter. All programs are compiled with maximum opti-
mization (-O3) using clang compiler version 3.2.

IPLS specializes these C programs against eleven inputs. Each
input is a script that is interpreted by the C program. The eleven
input programs are selected from the Computer Language Bench-
marks Game [7], which are commonly available for all three inter-
preters and single-threaded (IPLS does not support specialization

Input Script (Lines of code) Iteration
coverage(%)

Meta-level-
loops/traces

Lua-5.2.0 (19,832 LOC)
binary-trees (50) 78.01% 5
fannkuch-redux (48) 74.75% 6
fasta (98) 42.63% 5
k-nucleotide (66) 98.50% 2
mandelbrot (27) 99.99% 4
meteor (223) 0.76% 7
nbody (121) 97.57% 4
pidigits (104) 99.61% 9
regex-dna (46) 2.93% 5
reverse-complement (40) 0.00% 2
spectral-norm (43) 88.90% 5

Perl-5.14.2 (201,786 LOC)
binary-trees (47) 99.99% 4
fannkuch-redux (55) 99.99% 4
fasta (122) 98.99% 11
k-nucleotide (29) 99.93% 2
mandelbrot (77) 99.90% 4
meteor (235) 99.90% 10
nbody (107) 99.90% 10
pidigits (47) 95.06% 11
regex-dna (49) 99.92% 3
reverse-complement (29) 99.99% 4
spectral-norm (49) 99.99% 4

Python-2.7.2 (314,921 LOC))
binary-trees (70) 9.36% 2
fannkuch-redux (56) 35.02% 3
fasta (118) 3.03% 4
k-nucleotide (57) 5.15% 1
mandelbrot (55) 52.09% 1
meteor (205) 2.06% 5
nbody (116) 76.48% 6
pidigits (40) 1.15% 3
regex-dna (44) 11.23% 8
reverse-complement (37) 64.83% 10
spectral-norm (56) 48.77% 5

Table 1. Execution characteristics of each interpreter and each
static input: Iteration coverage denotes the fraction of hot loop it-
erations which are executed in specialized code. Meta-level loops/-
traces denotes the number of identified patterns for each of which
a specialized loop is generated.

of multi-threaded programs yet). All evaluations are measured on
an Intel Xeon X7460 64-bit processor running at 2.66GHz.

Figure 8 shows whole program speedup for the programs spe-
cialized with IPLS over original program execution. Figure 9 de-
picts the program size increase after specialization. As shown, IPLS
achieves a geomean speedup of 14.1% in program execution with
7.0% of program size increase.

7.1 Lua-5.2.0
For Lua-5.2.0, speedup of the specialized program correlates to
the fraction of iterations executed in the specialized loop. Table 1
shows this trend: Iteration coverage column shows the fraction of
all iterations of the main loop which execute within specialized
code. There is a clear distinction between cases where iteration
coverage is less than 3% and cases where iteration coverage is
greater than 70%. In the latter case, specialization yields 7.4%–
138% speedups, while in the former case, specialization yields a
performance degradation.

Low iteration coverage is caused by two factors: unexpected ex-
its due to the limited coverage of path profiling, and value mispre-
dictions which prevent dispatch into the specialized loop.



Input script Ratio of dynamic
instruction counts

binary-trees 1.11
fannkuch-redux 1.13
fasta 1.01
k-nucleotide 1.16
mandelbrot 2.28
meteor 0.99
nbody 1.55
pidigits 1.58
regex-dna 1.00
reverse-complement 1.00
spectral-norm 1.65

Table 2. Ratio of dynamic instruction count of the original pro-
gram to that of the specialized program for Lua-5.2.0. Larger num-
bers indicate a greater reduction in dynamic instructions.

Input script Lua (%) Perl (%) Python (%)
binary-trees 19.46 0.00 20.10
fannkuch-redux 2.13 0.00 3.32
fasta 12.50 0.00 0.99
k-nucleotide 0.00 0.00 46.90
mandelbrot 0.00 0.00 1.10
meteor 4.22 0.00 8.67
nbody 0.00 0.00 0.30
pidigits 0.03 0.00 46.83
regex-dna 9.71 0.00 1.66
reverse-complement 0.57 0.00 0.00
spectral-norm 1.25 0.00 8.33

Table 3. Unexpected exits from the specialized loop as a fraction
of the number of iterations running in a specialized loop.
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Figure 8. Whole-program speedup with three interpreters: Lua,
Perl, and Python, and 11 input scripts for each.

Profile coverage may be limited when a path does not occur
during training. Since IPLS generates specialized loops according
to path profiling, the program may take an unexpected path within
an iteration of its hot loop. To guarantee correctness, the code
generator inserts tests which detect this case, and conservatively
branches to the unspecialized code. We call such exits unexpected.
Since the dispatch condition may only enter the specialized loop
at the beginning of a pattern, if a specialized loop experiences
an unexpected exit the remainder of that pattern must execute in
non-specialized code before there is an opportunity to re-enter
specialized code. The occurrence of unexpected exits among the
total number of iterations is shown in Table 3.
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Figure 9. Code size increase after specialization for three inter-
preters: Lua, Perl, and Python, and 11 input scripts for each.

Additionally, value misprediction may prevent the main loop
from dispatching into the specialized loop. This occurs for some
input scripts in which control dependences carry information from
dynamic input to the dispatch condition. In other words, our op-
timistic implementation of DIFT occasionally misclassifies a dy-
namic value as static. As a result, the specialized program may ex-
perience a pattern that did not occur during profiling. In such cases,
the main loop does not dispatch to the specialized code, decreas-
ing iteration coverage. For example, the hottest loop in reverse-
complement includes an if statement which is predicated on a
dynamic input. This induces two different control paths in the script
and foils IPLS value prediction.

Fasta experiences performance degradation even though the
program has good iteration coverage. Difference in dynamic in-
struction counts after specialization, shown in Table 2, explains
this. The numbers in the table show the ratio of dynamic instruction
count of the original program to specialized program. Therefore,
larger numbers in the table mean that fewer dynamic instructions
were executed in the specialized program than the original. Unlike
other programs with high iteration coverage, the number is moder-
ate for Fasta. This implies that for Fasta specialization was not
able to find enough precomputable static instructions to amortize
the dispatch overhead introduced in the original loop.

7.2 Perl-5.14.2
Table 1 shows that Perl executes more than 99% of its main
loop iterations in specialized code for almost all inputs. This sug-
gests that the detected patterns are good predictors of the values.
This high predictability stems from the unique implementation
of the Perl interpreter’s intermediate representation. For instance,
reverse-complement is implemented using Perl’s split
operation instead of a syntactic if statement. Since the Perl in-
terpreter implements large operations such as split as a single
opcode, the control flow in Perl scripts are typically less dependent
on dynamic input.

The Perl interpreter’s main loop is structured differently than
others. While other interpreters load the opcode, parse it, and
branch to the appropriate handler, each handler in the Perl inter-
preter returns a function pointer that serves as a continuation to
the next operation. Hence, the Perl interpreter repeatedly performs
indirect calls. This is beneficial for IPLS since there can be no un-
expected exits. On the other hand, it limits IPLS since there are
fewer opportunities to optimize precomputable instructions.

This suggests that most performance improvements for Perl are
caused by increased instruction-level parallelism exposed by un-



rolling the loop, and by better branch prediction caused by re-
placing indirect function call with conditional branch and direct
function call. The ratio of dynamic instructions before and after
specialization for Perl ranges from 0.96 to 1.02, except 0.90 in
pidigits, which shows no benefit from precomputation.

Pidigits is the only Perl input which experienced slow
down. For pidigits, IPLS selects a dispatch condition for 11
specialized meta-level loop/trace. This dispatch condition is gen-
erated as 11 load-and-conditional-branch sequences which execute
upon every iteration of the main loop. The simple structure of Perl’s
main loop features such a low fetch-execute overhead that the IPLS
dispatch condition is comparably heavy. The benefits of special-
ization does not overcome the high dispatch overheads and low
iteration coverage in the case of pidigits.

7.3 Python-2.7.2
Like the Lua interpreter, application speedup for Python gener-
ally follows iteration coverage. As shown in Table 1, among the 5
scripts whose iteration coverage is greater than 30%, 4 showed bet-
ter speedup with Python than other scripts: fannkuch-redux,
mandelbrot, nbody, and spectralnorm.

Python reverse-complement, experiences a slow down
despite high iteration coverage. The hottest loop in reverse-
complement consists of a single meta-level node. Specialization
of a singleton meta-level loop has negligible benefit since there are
no opportunities for optimization over multiple iterations.

As shown in Table 3, the rate of unexpected exit is gener-
ally low, but is significant for three benchmarks: binary-tree,
k-nucleotide and pidigits. These unexpected exits have a
detrimental effect on iteration coverage and, in turn, on application
speedup. Unexpected exits are caused by coverage limitations dur-
ing path profiling. The Python interpreter’s main loop has compli-
cated control flow which is not determined by the current opcode.
For example, Python performs reference counting within the main
loop and counts the number of operations for preemptive switch-
ing among user-threads (although IPLS does not support multi-
threaded script, we did not disable the multi-threading features of
the interpreter). These rare behaviors are dynamic in the sense that
they don’t depend on the static input script. Since IPLS uses a nat-
ural loop detection algorithm to recognize meta-level loops, not all
nodes included in the meta-level loop need to be hot. For the meta-
level nodes not frequently observed during profiling, yet which are
included in the meta-level loop, their path profile information may
lack coverage of complex control flow within the main loop, caus-
ing unexpected exits.

8. Related Work
Compile-time Specialization Program specialization requires
binding-time information, which classifies all instructions in the
target program as either static or dynamic. To obtain the binding-
time information, C-Mix [2, 18] and Tempo [8, 9] rely on compile-
time analysis and user annotations. Unlike C-Mix and Tempo, IPLS
exploits profiling information to obtain the binding-time informa-
tion, so IPLS is complementary to these previous works.

Berlin et al. [4, 5] propose a specializer that optimizes scientific
programs written in high-level languages such as LISP. Since con-
trol flows in scientific programs are not affected by input values,
they unroll loops to expose parallelism inherent in the underlying
numerical computation. However, the loop unrolling may cause a
code explosion, so they explicitly exclude loops with high iteration
counts from unrolling. Although the authors propose a heuristic to
stop unrolling beyond a certain threshold, the heuristic is not eval-
uated. C-Mix [2, 18] and Tempo [8, 9] also suffer from code explo-
sion, and rely on user annotation to avoid the problem. Since IPLS

uses pattern based loop unrolling, this work neither has a code ex-
plosion problem, nor requires any user annotation.

JSpec [24] specializes Java using C as an intermediate lan-
guage and uses Tempo for binding-time analysis. Kleinrubatscher
et al. [15] propose a specializer for a subset of FORTRAN using
abstract interpretation to gather binding-time information.

Run-time Specialization Run-time specialization [3, 10–13, 19,
25] has an advantage over compile-time specialization because it
can exploit run-time constants that are not available at compile-
time. However, run-time specialization suffers from high overhead
of dynamic code generation. Tempo [10] supports both compile-
time and run-time specialization sharing binding-time analysis to-
gether, but run-time specialization of Tempo achieves about 80%
of the speedup of compile-time specialization, due to the run-time
overheads [21]. It shows that specializing the program statically
as much as possible can maximize the potential performance of
specialized programs. Exploiting profiling results at compile-time,
IPLS avoids the run-time overheads.

DyC [12, 13] is a run-time specializer, primarily focused on re-
ducing run-time overheads from dynamic code generation and opti-
mization. DyC requires user annotations to direct optimization pol-
icy and improve the precision of binding time information given by
compile-time analysis. Although Calpa [20] automatically gener-
ates the annotations for DyC with profile information, it is limited
to annotations about optimization policy only. Therefore, without
programmers hint, Calpa’s final result is still limited by compile-
time analysis. Unlike DyC, IPLS is a fully-automatic specializer
that does not require any user annotation.

Bala et al. [3] and Shankar et al. [25] propose run-time special-
izers that, like IPLS, do not require any user annotation. The spe-
cializers automatically find and optimize frequently executed traces
by exploiting the information available at run-time only. Since they
detect hot values to find traces, multiple traces in hot code re-
gions can be generated increasing dispatching overheads. However,
IPLS detect patterns before specializing codes, so IPLS can reduce
dispatching overheads. In addition, while Shankar et al. [25] rely
on strong type systems of Java to optimize program with possible
heap constants, IPLS can specialize programs written in C language
without type system supports.

Bolz et al. and Yermolovich et al. propose Just-In-Time compil-
ers which are optimized to the specific requirements of extracting
performance benefits from script interpreters [6, 28]. Script inter-
preters cannot benefit from tracing-JIT techniques [11, 29] which
do not trace across multiple iterations. That is because each itera-
tion in main loops of interpreters has diverse control flow due to
different instructions in the script. Addressing the problem, these
compilers find frequently executed traces in the scripts that stretch
over multiple iterations of the interpreter main loops, and specialize
the interpreters for the traces. This approach is similar to IPLS, but
the JIT compilers require user annotations to the interpreter pro-
gram at branch instruction handlers to find boundaries of loops in
the scripts, and at data structures to find static values.

9. Conclusion
This paper proposes Invariant-induced Pattern based Loop Special-
ization (IPLS), the first fully-automatic specialization technique
that exploits input-driven patterns across loops. IPLS profiles pro-
grams to specialize, and traces how invariants are propagated using
information-flow tracking. With the profiling results, IPLS finds
repeating patterns across multiple iterations of hot loops, and then
specializes the loops predicting values in the loops. Without any
user annotation, IPLS specializes three real-world script inter-
preters and eleven scripts each, yielding a geomean speedup of



14.1% over the original codes yet causing only 7% program size
growth.
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