Communication Optimizations for Global Multi-Threaded
Instruction Scheduling

Guilherme Ottoni

David I. August

Department of Computer Science
Princeton University

{ottoni, august}@princeton.edu

Abstract

The recent shift in the industry towards chip multiprocessor (CMP)
designs has brought the need for multi-threaded applications to
mainstream computing. As observed in several limit studies, most
of the parallelization opportunities require looking for parallelism
beyond local regions of code. To exploit these opportunities, es-
pecially for sequential applications, researchers have recently pro-
posed global multi-threaded instruction scheduling techniques, in-
cluding DSWP [16] and GREMIO [15]. These techniques simulta-
neously schedule instructions from large regions of code, such as
arbitrary loop nests or whole procedures, and have been shown to
be effective at extracting threads for many applications. A key en-
abler of these global instruction scheduling techniques is the Multi-
Threaded Code Generation (MTCG) algorithm proposed in [16],
which generates multi-threaded code for any partition of the in-
structions into threads. This algorithm inserts communication and
synchronization instructions in order to satisfy all inter-thread de-
pendences.

In this paper, we present a general compiler framework, COCO,
to optimize the communication and synchronization instructions in-
serted by the MTCG algorithm. This framework, based on thread-
aware data-flow analyses and graph min-cut algorithms, appropri-
ately models and optimizes all kinds of inter-thread dependences,
including register, memory, and control dependences. Our exper-
iments, using a fully automatic compiler implementation of these
techniques, demonstrate significant reductions (about 30% on aver-
age) in the number of dynamic communication instructions in code
parallelized with DSWP and GREMIO. This reduction in commu-
nication translates to performance gains of up to 40%.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors — code generation, compilers, optimization;
C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures (Multiprocessors) — multiple-instruction-stream, multiple-
data-stream processors (MIMD); G.2.2 [Discrete Mathematics]:
Graph Theory — graph algorithms

General Terms Algorithms, Languages, Performance

Keywords multi-threading, instruction scheduling, communica-
tion, synchronization, data-flow analysis, graph min-cut

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’08, March 1-5, 2008, Seattle, Washington, USA.

Copyright (© 2008 ACM 978-1-59593-958-6/08/03. .. $5.00

1. Introduction

The recent shift in the industry towards chip multiprocessors
(CMP) has brought to mainstream computing the need to exploit
thread-level parallelism (TLP) as a means to improve performance.
Since developing parallel applications has long been recognized as
significantly harder than developing sequential ones, having auto-
matic tools to extract TLP from sequential programs is very attrac-
tive. Unfortunately, despite decades of research on parallelizing
compilers, these have only proved effective in the restricted do-
main of scientific and data-parallel applications, which often have
regular array-based memory accesses and little control flow.

The irregular memory accesses and control flow in general-
purpose applications typically result in a large number of depen-
dences that have to be respected by the compiler. This makes it
hard to find coarse-grained parallelism in these programs. In or-
der to automatically extract TLP for these applications, researchers
have investigated two main directions. First, thread-level specula-
tion (TLS) techniques have been proposed to exploit optimistic par-
allelization in the presence of infrequent dependences [23, 30, 31].
Though effective in some cases, TLS generally requires expensive
hardware support. Second, researchers have proposed hardware
mechanisms to lower the inter-thread communication costs, thus
enabling the exploitation of finer-grained, non-speculative TLP
found in general-purpose applications [18, 19, 24]. Effectively ex-
ploiting this second kind of hardware mechanism to automatically
extract fine-grained, non-speculative TLP is the topic of this paper.

Proposed hardware support mechanisms for non-speculative,
fine-grained TLP typically consist of an on-chip interconnect be-
tween the processor cores and means to communicate scalar values
from one core to another. To the software, these communication
mechanisms look like sets of queues with blocking primitives to
send and receive values, typically in the form of special produce
and consume instructions or register-mapped queues. Extracting
parallelism for these processors consists of partitioning the com-
putation into threads and inserting communication instructions to
satisfy inter-thread dependences using the hardware support. These
hardware mechanisms enable TLP at a fine granularity, which is
unsuitable for programmers to manually exploit. Therefore, gener-
ating code that exploits these TLP opportunities is better performed
by a compiler’s instruction scheduler.

In order to effectively extract TLP, several limit studies have
shown that it is necessary to exploit parallelism beyond local re-
gions of code and to execute multiple flows of control in paral-
lel [10, 26]. In fact, CMPs’ ability to simultaneously execute dif-
ferent regions of code on different cores is their key advantage over
single-core processors. To effectively exploit these opportunities,
researchers have recently proposed Global Multi-Threaded (GMT)
instruction scheduling techniques, which simultaneously sched-

1 Computation
] Communication

% Dynamic Instructions

(a) GREMIO

1 Computation
] Communication

% Dynamic Instructions

Figure 1. Breakdown of dynamic instructions in code generated by (a) GREMIO and (b) DSWP.

ule instructions of a global region of code into multiple threads.
Examples of such scheduling techniques are Decoupled Software
Pipelining (DSWP) [16] and GREMIO [15], which are able to ex-
tract non-speculative TLP from arbitrary loop nests and procedures.
Given that threads can pursue different paths of execution, a major
difficulty faced by GMT scheduling techniques is to generate cor-
rect code while not inserting too much communication, which can
negate the parallelism.

A key enabler of both DSWP and GREMIO, and virtually any
GMT scheduling technique, is the very general Multi-Threaded
Code Generation (MTCG) algorithm proposed in [16]. This algo-
rithm takes any partition of instructions into threads and generates
provably correct code. To achieve this, the MTCG algorithm inserts
communication instructions to satisfy all inter-thread dependences.
For GMT scheduling, these dependences include data dependences
through registers and memory, as well as control dependences.

Because of the number of dependences in general-purpose ap-
plications, the overhead of communication instructions can be quite
significant in code generated by GMT instruction scheduling tech-
niques. For example, in Figure 1, we show the dynamic percent-
ages of communication instructions compared to the original in-
structions in the program (the computation) for various benchmarks
parallelized with GREMIO and DSWP. As illustrated, the commu-
nication instructions can account for up to one fourth of the total
instructions. This motivates the study of communication optimiza-
tions. Reducing the number of dynamic communication instruc-
tions between threads not only improves the performance by re-
ducing the number of instructions executed, but also reduces the
contention and power consumption by the on-chip inter-connect.

In this paper, we present a general COmpiler Communication
Optimization (COCO) framework to optimize inter-thread com-
munication for the MTCG algorithm. COCO uses a set of novel
thread-aware data-flow analyses, in combination with efficient
graph min-cut algorithms. Based on these, we describe how to pre-
cisely model and optimize all kinds of inter-thread dependences,
including register, memory, and control dependences. Our exper-
iments demonstrate the effectiveness of these optimizations on a
variety of benchmarks parallelized using DSWP and GREMIO.

2. GMT Instruction Scheduling

This section gives an overview of GMT instruction scheduling by
describing the key components in virtually any such technique.
In essence, GMT instruction scheduling encompasses three main
steps, illustrated in Figure 2. The first step is to build a Pro-
gram Dependence Graph (PDG) [5], including all the dependences
that need to be respected. The PDG for an arbitrary global (intra-
procedural) region must include both data and control dependences.
In a low-level representation, data dependences can be through ei-

ther registers or memory. Register dependences can be computed
through simple data-flow analysis, while memory dependences re-
quire more complex alias analysis, typically based on pointer anal-
ysis. PDGs provide a good abstraction for performing global in-
struction scheduling because they contain all the dependences that
need to be honored in order to preserve the semantics of the original
program [21]. This implies that, whenever two dependent instruc-
tions are scheduled on different threads, some form of communi-
cation or synchronization has to be inserted in the code so that this
dependence is respected.

Sequential PDG PDG Partiti Partitioned | MT Code MT
) artitioner
Program | Builder PDG Generator | program

Figure 2. GMT instruction scheduling block diagram.

After the PDG is constructed, a GMT scheduler needs to as-
sign instructions to threads, i.e. to partition the instructions among
threads. This phase, the partitioner, is where the GMT scheduling
techniques differ. For example, DSWP is a partitioner that creates a
pipeline of threads, among which the dependences only flow in one
direction [16]. The GREMIO technique [15], on the other hand,
allows cyclic inter-thread dependences and schedules instructions
based on their control relations and an estimate of when instruc-
tions will be ready to execute.

Once a partition of instructions into threads is chosen, the corre-
sponding multi-threaded code needs to be generated. For this pur-
pose, both DSWP and GREMIO utilize the general MTCG algo-
rithm proposed in [16]. This algorithm is also responsible for in-
serting communication and synchronization in the multi-threaded
code so as to satisfy all PDG’s inter-thread dependences. Since
this paper focuses on optimizing the communications generated by
MTCG, we describe it in detail in Section 2.1. Notice that, as illus-
trated in Figure 2, the PDG representation and the MTCG algorithm
together provide a nice framework to perform GMT instruction
scheduling. Different GMT schedulers can be implemented simply
by “plugging” different partitioners in this framework.

2.1 MTCG Algorithm

This subsection describes the MTCG algorithm [16], highlighting
how it enforces inter-thread dependences. Algorithm 1 presents
the pseudo-code for MTCG, which takes as input the original
control-flow graph (CFG), the program dependence graph (PDG),
and the chosen partition (P) of the instructions into threads. As
output, this algorithm produces a new CFG for each of the resulting
threads, containing its corresponding instructions and the necessary
communication instructions.

Algorithm 1 MTCG

Require: CFG, PDG, P = {Py,..., Py}
1: for each thread P;, create CFG; with its relevant basic blocks;
2: insert each instruction in its thread’s CFG;
3: for all arcs (I — J) € PDG do

// insert communication

4 let P;, Pj be suchthat I € P; and J € P;
5: if P, = Pj then
6: continue
7: endif
8: q <« get_free_queue()
9: if dep_type(I — J) = Register then // register dep.
10: ri < dependence_register(I — J)
11: add_after(CFG;, I, “produce [¢q] =1r1”)
12: add_after(CFGj, I, “consume 7, =[q]”)
13: elseif dep_type(I — J) = Memory then // memory dep.
14: add_after(CFG;, I, “produce. sync [q]”)
15: add_after(CFGj, I, “consume. sync [q]”)
16: else // control dep.
17: Ty, «— register_operand(l)
18: add_before(CFG;, I, “produce [q] =1”)
19: add_before(CFGj, I, “consume ry, = [q]”)
20: add_after(CFGj, I, duplicate([))
21: endif
22: end for

23: fix branch/jump targets.

In essence, the MTCG algorithm has four main steps. In the
first step (line 1), a new CFG; is created for each thread P;.
CFG; contains one basic block for each relevant basic block to
P; in the original CFG. A basic block is relevant to a thread
if it contains either: (a) an instruction scheduled to P;, or (b)
an instruction on which any of P;’s instructions depends (i.e. a
source of a dependence with an instruction in P; as the target). The
reason for including basic blocks containing instructions in P; is
obvious, as they will hold these instructions in the generated code.
The reason for adding the basic blocks containing instructions on
which P;’s instructions depend is related to where communication
instructions are inserted by MTCG, as described shortly.

The second step of MTCG (line 2) is to insert the instructions in
P; into their corresponding basic blocks in CFG;. The instructions
are inserted in the same relative order as in the original code, so
that intra-thread dependences are naturally satisfied.

The third step of the algorithm is to insert the inter-thread
communication instructions, and is detailed in lines 3-22 in Al-
gorithm 1. For each such dependence, a separate communication
queue is used.! In order to preserve the conditions under which
each dependence occurs, MTCG adopts this strategy: each de-
pendence is communicated at the point of its source instruction.
The actual communication instructions inserted depend on the type
of the dependence, as illustrated in Algorithm 1. In this pseudo-
code, add_before(CFG;, I, instr) inserts instr in CFG; at the
point right before instruction I’s position in the original CFG,
and add_after works analogously. Register dependences are im-
plemented by communicating the register in question. For mem-
ory dependences, purely synchronization instructions are inserted
to enforce that their relative order of execution is preserved. Finally,
control dependences are more involving. In the source thread, be-
fore the branch is executed, its register operand is sent. In the target
thread, a consume instruction is inserted to get the corresponding
register value, and then an equivalent branch instruction is inserted
to mimic the same control behavior. A simple optimization (not il-
lustrated in Algorithm 1) is that, if an instruction is the source of

U'A separate queue is used just for simplicity. Later, a queue-allocation
algorithm can reduce the number of queues necessary.

—» register dependence

F:oo=rl/.. | e » control dependence
G ..=12+1 - transitive control dependence
(a) Original CFG (b) PDG
BI’
A:rl=..
produce [1] =rl
B:r2=..
C:=rl+.. B1"
produce [2] =12
consume rl = [1]
D: branch 12 ==0, B2’ . -
consume 12 = [2]
/ D": branch r2 ==0, B2"
B Y
E:rl=.. B2"
produce [3] =rl consume rl = [3]

\

B3’ B3"
G:..=12+1 F:..=rl/..

(c) Thread 1 (d) Thread 2

G forrl

Figure 3. Simple example of the MTCG algorithm.

multiple dependences with the same target thread, it only needs to
be communicated once.

The last step of the MTCG algorithm (line 23) is to adjust the
branch and jump targets in each new CFG. Because not all the
basic blocks in the original CFG have a corresponding one in each
new CFG, finding the adequate branch/jump targets is non-trivial.
Section 2.2.3 in [16] describes how to compute the correct branch
targets, based on the post-dominance relation.

The simple example in Figure 3 illustrates how MTCG works.
Figure 3(a) shows the original code in a CFG, and Figure 3(b)
contains the corresponding PDG. Assume a partition into 2 threads:
P, ={A,B,C,D,E,G} and P, = {F}. Figures 3(c)-(d) show
the code generated by MTCG for each thread. Thread 1 (P;) has
instructions in all basic blocks, and thus they are all relevant to
it. For thread 2, B3 is relevant because it holds instruction F'
assigned to this thread, and B1 and B2 are relevant because they
contain instructions on which F' depends. As can be seen in the
PDG, there are 3 inter-thread dependences in this case: two register
dependences (A — F) and (E — F) involving 71, and a
transitive control dependence (D — F). This transitive control
dependence exists because D controls E, which is the source of
an inter-thread register dependence. Transitive control dependences
are necessary in order to implement the correct condition under
which a dependence occurs [16]. In Figures 3(c)-(d), there is a
pair of produce and consume instructions for each inter-thread
dependence, inserted according to Algorithm 1.

In the example in Figure 3, the set of communication instruc-
tions inserted by MTCG is not optimal. It would be more efficient
to simply communicate 71 at the beginning of blocks B3’ and B3”,
for two reasons. First, this would avoid communicating r1 twice

on the path (B1, B2, B3). Second, this would make it unnecessary
to have branch D" in thread 2, thus saving the communication of
r2 as well. The next section describes efficient and effective algo-
rithms to perform these register communication and control flow
optimizations in general, as well as to optimize the memory syn-
chronizations inserted by MTCG.

3. Communication Optimizations

As motivated by the example in Figure 3, the goal of COCO is to
reduce the number of dynamic communication and synchronization
instructions executed in the generated MT code. Unfortunately, as
with many program analysis and optimization problems, this prob-
lem is undecidable in general, since it is undecidable to statically
determine which paths will be dynamically executed. For this rea-
son, COCO uses a profile-based approach, in which an estimate on
the execution count of each CFG edge is available. These estimates
can be obtained through profiling or through static analyses, which
have been demonstrated to be also very accurate [28]. Given the
profile weights, the problem can be formulated as to minimize the
communication assuming each CFG edge’s execution frequency as
indicated by its weight.

Before formulating the communication optimization problems
and describing the algorithms, we introduce several definitions and
properties that are necessary. First, in Definition 1 below, we define
the notion of relevant branches to a thread. This definition parallels
the notion of relevant basic blocks of [16], described earlier in
Section 2.1. However, Definition 1 is more general in that it allows
communication to be inserted at points other than the point of a
dependence’s source instruction.

DEFINITION 1 (Relevant Branches). A branch instruction B is
relevant fo thread T if either:

1. B is assigned to T in the partition; or

2. B controls the insertion point of an input dependence of an
instruction assigned to T'; or

3. B controls another branch B’ relevant to T.

The intuition is that relevant branches are those that thread 7'
will contain, either because they were assigned to this thread or
because they are needed to implement the correct condition under
which a dependence into 7" must happen.

Based on the notion of relevant branches for a given thread, we
define its relevant points in the program.

DEFINITION 2 (Relevant Points). A program point p in the orig-
inal CFG is relevant to thread T iff all branches on which p is
control dependent are relevant branches to T

In other words, the relevant points for thread 71" are those that de-
pend only on 7"s relevant branches. This means that the condition
of execution of these points can be implemented without adding
new branches to 7.

The communication instructions generated by MTCG obey an
important property to enable the TLP intended by the thread parti-
tioner:

PROPERTY 1. All inter-thread communications in the generated
MT code correspond to dependence arcs in the PDG, including
transitive control dependence arcs.

This property guarantees that only dependences represented in
the PDG will be communicated. This is important because, as illus-
trated in Figure 2, the partitioner is based on the PDG. If Property 1
was not respected, then MTCG could hurt the parallelism intended
by the partitioner. For example, the DSWP partitioner assigns in-
structions to threads so as to form a pipeline of threads. However, if

Property 1 is not respected, a dependence cycle among the threads
can be created.

In the MTCG algorithm, since communication is always in-
serted at the point corresponding to the source of the dependence,
all inter-thread transitive control dependences need to be imple-
mented [16]. In other words, each of these dependences will re-
quire its branch operands to be communicated and the branch to
be duplicated in the target thread. With COCO, however, a better
placement of data communications can reduce the transitive control
dependences that need to be implemented. For this reason, besides
Property 1, COCO also respects the following property to limit the
transitive control dependences that need to be implemented:

PROPERTY 2. The communication instructions to satisfy a depen-
dence from thread Ts to thread Ty must be inserted at relevant
points to Tk.

Essentially, this property prevents branches from becoming rel-
evant to thread 75 merely for implementing a dependence emanat-
ing from 7. In other words, no new branches must be added to
T in order to implement a dependence from it to 73. However, ad-
ditional branches may be made relevant to the target thread 77 in
order to implement one of its input dependences.

Besides Properties 1 and 2, the placement of register communi-
cations must also respect the Safety property for correctness:

PROPERTY 3 (Safety). A register dependence from Ts to Ty in-
volving (virtual) register r must be communicated at safe points,
where Ts has the latest value of r.

This property is necessary for correctness because communicat-
ing r at an unsafe point would, in some control paths, overwrite r
in T} with a stale value. In other words, a dependence from a defi-
nition of 7 not in 7 to a use of in 7% would not be respected, thus
changing the program’s semantics. Notice that MTCG’s placement
of communication is safe, since the registers are communicated im-
mediately after they are defined.

The set of registers that are safe to communicate from thread
Ts to any other thread at each program point can be precisely
computed using the data-flow equations (1) and (2) below. In these
equations, DEFr, and USEr, denote the set of registers defined
and used by instruction n if it is assigned to 75, and DEF means
the set of registers defined by n regardless of which thread contains
n.

SAFE,.(n) = DEFr,(n)UUSEr, (n)U
(SAFE;,(n) — DEF(n)) M

SAFEu(n) = () SAFEu(p) @
pEPred(n)

The intuition behind these equations is that 7T is guaranteed
to have the latest value of a register r right after 7’5 either defines
or uses r. Furthermore, the value of r in T becomes stale after
another thread defines r. Finally, the data-flow analysis to compute
safety is a forward analysis, and the SAFE;,, sets are initially empty.

This safety data-flow analysis is said to be thread-aware be-
cause, although operating on a single CFG, it takes the assignment
of instructions to threads into account. An equivalent analysis could
operate on multiple CFGs (one per thread) simultaneously, given
the correspondence between the basic blocks in all CFGs.

Based on the definitions and properties above, the next subsec-
tion focuses on optimizing the communication between a pair of
threads. Later, in Section 3.2, a general algorithm to handle any
number of threads is described.

3.1 Optimizing a Pair of Threads

We first describe how COCO optimizes register communication
in Section 3.1.1. Then, Section 3.1.2 shows how to extend COCO
to also minimize control flow. Finally, Section 3.1.3 demonstrates
how COCO optimizes memory synchronizations as well.

3.1.1 Optimizing Register Communications

We now formulate the problem of optimizing register communi-
cations from a source thread 7 to a target thread 7;. Since the
communication of each register requires its own set of instructions,
it is possible to optimize the communication of each register inde-
pendently. So let » denote the register whose communication is to
be optimized.

The register communication optimization problem can be pre-
cisely modeled as a min-cut problem in directed graphs, by con-
structing a graph Gy = (Vy, Ay) derived from the CFG as de-
scribed shortly. The intuition behind the construction of Gy is that
a cut in this graph will correspond to communicating r at the pro-
gram points corresponding to the arcs in this cut.

The set of vertices in V; contains the original code instructions
where r is live with respect to T;. That means the live range of
r considering only the uses of r in the instructions assigned to
T:. This can be computed using a thread-aware data-flow analysis
very similar to the standard liveness analysis.? In addition, V; also
contains one vertex corresponding to the entry of each basic block
where r is live with respect to 7. The need for these vertices
will become clear shortly. Finally, there are two special nodes: a
source node .S, and a target (or sink) node 7'. The arcs in Ay are
of two kinds. Normal arcs represent possible flows of control in
the program, corresponding to the arcs in the CFG constructed at
the granularity of instructions. These arcs have a cost equal to the
profile weight of their corresponding CFG arcs. In addition, there
are also special arcs from S to every definition of r in T, and
from every use of r in T} to T'. The costs of the special arcs are
set to infinity to prevent them from participating in a minimum
cut. This is necessary because special arcs do not correspond to
program points, and thus cannot have communication instructions
placed on them.

As an example, consider the code in Figure 3(a) with the par-
tition Ts = {A,B,C,D,E,G} and T, = {F}. Figure 3(e) il-
lustrates the graph Gy for register r1. The source and sink nodes
are represented by a triangle and an inverted triangle, respectively.
Node B3niry corresponds to the beginning of block B3, the only
block that has r1 live at its entry.

When drawing special arcs to the target node 7" in G, besides
the uses of r in instructions assigned to 7%, uses of r in relevant
branches to T} are also considered as uses in T;. The reason for this
is that, as mentioned earlier, relevant branches to a thread need to
be included in it to properly implement its control flow. In effect,
treating branches as belonging to all threads to which they are rele-
vant allows the communication of branches’ register operands to be
optimized along with register data communications. This can result
in better communication of branch operands compared to MTCG’s
strategy of always communicating branch operands immediately
before branches in order to implement control dependences (lines
18-19 in Algorithm 1).

Notice that, in order to satisfy the dependences involving r
from T to T}, communication instructions for r can be inserted
at any subset of Ay that disconnects 1" from S. In other words,
any cut in Gy corresponds to a valid placement of communication
instructions, namely communicating 7 at each arc in this cut. This
guarantees that r will be communicated from 7% to T; along every
path from a definition of r in 75 to a use of r in 7;. In particular,

2 The data-flow equations are omitted here in interest of space.

BI A

A:rl=0
1 ®)

B2
B:rl=rl+..)9
C: branchrl <...

1
B3
D:r2=1
1
B4
E: r2=r2%rl)9
F: branchr2 < ...
1
B5 —» register dependence
----- » control dependence
(@) (b) ©
Original CFG PDG Gy forrl

Figure 4. An example with loops.

the original MTCG algorithm always uses the cut containing the
outgoing arcs in Gy of the instructions defining 7 in 7. This
corresponds to the cut containing (A — B) and (E — B3cntry) in
Figure 3(e). Since S only has arcs to nodes corresponding to 7s’s
instructions defining r, this is clearly a cut in G'y.

By the construction of G, for a given cut C' in G ¢, the number
of dynamic communications of r that will be executed corresponds
to the cost of the arcs in C'. Therefore, the problem of finding the
minimum number of dynamic communications reduces to finding
a minimum cut in Gy. In Figure 3(e), arc (B3entry — F') alone
forms a min-cut, with a cost of 10. This example also illustrates
the role of the nodes in Gy corresponding to basic block entries,
which is to allow the placement of communications before the first
instruction in a basic block (B3 in this case).

In fact, the formulation described so far is still incomplete,
because it allows any normal arc in Gy to be cut. However, there
are arcs that must not participate in a cut because communicating
r at those points violates one of Properties 1, 2 or 3. To prevent
such arcs from participating in a cut, their costs are set to infinity.
As long as there exists a cut with finite cost, these arcs (and also
the special arcs involving S and 7') are guaranteed not to be in a
min-cut. Fortunately, a finite-cost cut always exists: the cut that the
MTCG algorithm picks. That is true because the points right after
the definitions of r in T are both safe (i.e. T has the latest value
of r there) and relevant to 7’s (since they have the same condition
of execution of the definitions of r in T5).

To illustrate a more drastic case where the MTCG algorithm
generates inefficient code, consider the example in Figure 4. The
partition in this case is Ts = {4, B,C} and T; = {D, E, F'}. The
only inter-thread dependence is the register dependence (B — E).
The MTCG algorithm communicates r1 right after instruction B,
inside the first loop. For this reason, a transitive control dependence
(C — E), not illustrated in Figure 4(b), also needs to be commu-
nicated. As a result, thread 7; will contain the first loop as well.
In effect, 7% will consume the value of r1 each time B is exe-
cuted, even though only the last value assigned to r1 is used by
instruction E. Figure 4(c) shows the graph G5 constructed for r1.
Notice that Gy does not contain nodes before B, including the arc

(C — B2eniry), since 71 is not live with respect to T; at these
points. Applying the register communication optimization, 71 can
be communicated in either of the arcs with cost 1 in Figure 4(c).
Any of these cuts essentially corresponds to communicating r1 at
block B3. This drastically reduces the number of times 71 is com-
municated from the total number of B2’s loop iterations, 10, down
to 1. Furthermore, as a side effect, this completely removes the first
loop from thread 7%, making it unnecessary to implement the tran-
sitive control dependence (C' — E).

Fortunately, there are efficient algorithms to compute a min-cut
in direct graphs. In fact, due to its duality to maximum flow [6],
min-cut can be solved by efficient and practical max-flow algo-
rithms based on preflow-push, with worst-case time complexity
O(n?®), where n is the number of vertices [4]. For our problem,
given that G is limited to a register’s live-range, even algorithms
with worse time complexity run fast enough so as to not increase
compilation time significantly, as observed in our experiments.

3.1.2 Reducing Control Flow

As illustrated in the example from Figure 4, the placement of data
communication can also reduce the control flow in the target thread.
In some cases, as in Figure 4, this comes for free simply by opti-
mizing the data communications. However, there are cases where
there are multiple cuts with the minimum cost, but some of them
require more inter-thread control dependences to be implemented
than others. Extra control flow in the target thread 7; is necessary
whenever communication is placed at points currently not relevant
to T%. This forces these branches to be added to the set of relevant
branches for 7%, so that they will need to be implemented in 7.

In order to avoid branches unnecessarily becoming relevant to
T}, the costs of the arcs in Gy can be adjusted as follows. The idea
is to penalize arcs that, if cut, will require additional branches to
become relevant to T;. Thus, we add to each arc A in G5 the profile
weight of each currently irrelevant branch to 73 that will become
relevant if communication is placed on A. The reasoning is that
these branches would not be necessary otherwise, so we add the
number of dynamic branches that would be executed to the cost of
A. To illustrate this, consider the example in Figure 5(a), with Ts =
{A,B,C,D,E,G}andT; = {F, H, I, J, K}. The corresponding
PDG is shown in Figure 5(d). Consider the communication of r1
from 7’ to T;. This communication is only allowed to be placed in
basic blocks B3, B4, and B6, since, from B7 on, it is not safe due to
the definition of 1 in instruction F' in T%. The two alternatives then
are to communicate 71 either in B6 or in B3 and B4. Looking at
the profile weights, both alternatives look equally good. However,
communicating at B3 and B4 makes the branch instruction B
relevant to 7%, while communicating at B6 does not. Figure 5(b)
illustrates the graph Gy for 1 with the costs adjusted to account
for control flow costs. Assume branch B is currently not relevant to
T;. The arcs (C' — D), (D — BO6entry), and (E — B6eptry) are
control dependent on B, and thus have the profile weight of B, 8,
added to their costs. With these penalties added, the min-cut in G5
is either arc (B6entry — G) or arc (G — BTentry) in Figure 5(b).
Both these cuts correspond to placing the communication of r1 in
block B6, thus avoiding adding branch B to T}’s set of relevant
branches.

Notice that, after adding these penalties to account for control
flow, the problem is not precisely modeled anymore. For instance,
multiple arcs including a penalty for one branch will include the
cost of this branch, and thus a cut including two or more of these
arcs will be over-penalized. But, since the arc costs are used to
choose a cut, the information about which arcs will participate
in the solution cut is unknown a priori to make the control-flow
penalties more precise.

B3
Cirl=..
D: storey =...
BS
I ..=rl 9
J: load ... = x
(@)
Original CFG

— register dependence
----- » control dependence
memory dependence

(d) PDG

Figure 5. An example including memory dependences.

3.1.3 Optimizing Memory Synchronizations

This section describes how synchronization instructions, used to
respect inter-thread memory dependences, can also be accurately
modeled in terms of graph min-cut.

Although memory dependences are also implemented through
queues and produce and consume instructions (Section 2.1),
they differ from register dependences in several aspects. First, for
memory dependences, no actual operand is sent through the queues,
and only the synchronization matters. As a result, multiple mem-
ory dependence arcs involving unrelated memory locations can
share the same synchronization instructions. This changes a fun-
damental characteristic of the optimization problem, as described
shortly. Another difference compared to register communication
is that, for memory, the produce and consume instructions
must have the proper release and acquire semantics in the mem-
ory subsystem. That is, the produce must ensure that previous
memory-related instructions have committed and, analogously, the
consume must commit before successive memory-related instruc-
tions execute. Compared to the produce and consume instruc-

tions for register communication, the memory versions restrict re-
ordering of instructions in the microarchitecture. This difference is
also the reason why register communication instructions cannot be
used to satisfy memory dependences.

As mentioned above, the fact that memory dependence arcs in-
volving disjoint sets of memory locations can share synchroniza-
tion instructions makes the problem different from the register com-
munication one. The reason for this derives from the fact that, while
the single-source, single-sink min-cut problem can be efficiently
solved in polynomial time, min-cut is NP-hard for multiple source-
sink pairs (also called commodities), where the goal is to discon-
nect each source from its corresponding sink [7]. For registers, the
problem could be precisely modeled using a single source-sink pair
by applying the standard trick of creating special source and sink
nodes and connecting them to the rest of the graph appropriately.
This was possible because, for a register r, it was necessary to dis-
connect every definition of r in T from every use in 7. For mem-
ory, however, a similar trick does not lead to an optimal solution.
Finding the optimal solution for memory requires optimizing all
memory dependences from 7’ to 73 simultaneously, since they all
can be implemented by the same synchronization instructions. Nev-
ertheless, it is not necessary for all sources of memory dependences
in T’ to be disconnected from all targets of these dependences in
T:, since dependences can refer to disjoint sets of memory loca-
tions. A memory instruction in 7’s needs only to be disconnected
from its dependent memory instructions in 7;. To accurately model
this optimization problem, it is necessary to use a graph min-cut
with multiple source-sink pairs.

Notice that, although this difference requires using sub-optimal
algorithms for memory optimization in practice, the possibility of
sharing synchronization instructions makes the potential optimiza-
tion impact larger for memory than for registers. In fact, this is
confirmed in the experiments in Section 4.

We now describe how to construct the graph G'; to optimize
memory dependences from thread 7 to thread 7;. Although the
register optimization could be restricted to the region correspond-
ing to the register’s live-range, this is not always possible for mem-
ory due to weak memory updates and the impossibility of elim-
inating all false dependences through renaming. For this reason,
the nodes in Gy for memory may need to correspond to the entire
region being parallelized. Akin to what was described for regis-
ters, G’y here includes nodes corresponding to basic block entries.
As explained above, to precisely model the memory optimization
problem, it is necessary to use multiple source-sink pairs in Gy.
Specifically, for each memory dependence arc from 7’s to 7% in the
PDG, a source-sink pair is created for its source and target instruc-
tions.

The costs on G'¢’s arcs for memory are the same as for registers,
with two differences. First, there is no notion of safety for memory
synchronization. In other words, since no operand is communicated
for memory dependences, no arc is prohibited from participating in
the cut because it is not safe to synchronize at that point. The second
difference is that, since the source (sink) nodes here correspond to
real instructions in the program, their outgoing (incoming) arcs are
allowed to participate in the cut and thus do not have their costs set
to infinity. Similar to what is used for register dependences, arcs
dependent on irrelevant branches to either 7’ or 7} have their costs
set specially.

As an example, consider the placement of memory synchroniza-
tion for the code in Figure 5. There are two cross-thread mem-
ory dependences from T to T3: (D — K) involving variable y,
and (G — J) involving variable x. Figure 5(c) illustrates the Gy
graph constructed as described, with the two source-sink pairs dis-
tinguished by different shades. The arcs from node H all the way
down to B9y have infinite cost because they are control depen-

Algorithm 2 COCO

Require: CFG, PDG, P
1: G « Build_Thread_Graph(PDG, P)
2: relevantBr < Init_Relevant_Branches(Gr, P)
3: deps « 0
4: repeat
5: oldDeps < deps
6: deps — 0
7
8

for all arcs (Ts — T%) € G [in topological order] do

stDeps «— ()

9: for all registers r to be communicated from Ts to 73 do
10: Gy + Build_Flow_Graph_Register(r, T, Tt, relevantBr)
11: commArcs < Min_Cut(G y)

12: stDeps «— stDeps U {(r, Ts, Tt, commArcs)}

13: end for

14: G e Build_Flow_Graph_-Memory(Ts, T%, relevantBr)
15: commArcs < Min_MultiCut(G s)

16: stDeps «— stDeps U {(MEM,Ts,T:, commArcs)}
17: Update _Relevant_Branches(relevantBr|[T:], stDeps)
18: deps < deps U stDeps

19: end for

20: until oldDeps = deps
21: return deps

dent on branch H, which is not relevant to 7’s. The min-cut solution
in the example is to cut the arc (G — BTentry), With a cost of 8.

Given the NP-hardness of the min-cut problem with multiple
source-sink pairs, the following heuristic solution is used in this
work. The optimal single-source-sink algorithm is successively ap-
plied to each source-sink pair. When an arc is cut to disconnect a
pair, it is removed from the graph so that this can help disconnect-
ing subsequent pairs. As illustrated in our experiments, this simple
heuristic performs well in practice.

3.2 Optimizing Multiple Threads

‘We now turn to optimizing the communication for multiple threads.
COCO tackles this more general problem by relying on the pair-
wise algorithms described above.

Algorithm 2 presents the pseudo-code for COCO. As input,
COCO takes the original CFG and PDG for the region being paral-
lelized, as well as the partition into threads specified by the par-
titioner. As output, this algorithm returns the set of inter-thread
dependences annotated with the points in the program where the
communication instructions should be inserted. These annotations
can be directly used to place communications in a slightly modified
version of MTCG.

The first step in COCO (line 1) is to build a thread graph
G as follows, representing the dependences between threads. For
each thread, there is a node in Gp. There is an arc (Ts — T})
in Gr if and only if there is a PDG dependence arc from an
instruction in thread 7 to an instruction in another thread 7.
COCO successively optimizes the communications between each
pair of threads connected by an arc in Gr.

The algorithm iteratively computes a set of inter-thread depen-
dences (deps) annotated with their corresponding communication
insertion points. Besides that, the algorithm maintains the set of
relevant branches to each thread, computed according to Defini-
tion 1. At the beginning (line 2 in the algorithm), the sets of rel-
evant branches are initialized following rules 1 and 3 in Defini-
tion 1. Later, as the insertion points for communication are com-
puted, these sets grow using rules 2 and 3 in this definition. Al-
though not illustrated in Algorithm 2, the set of relevant points to
each thread, derived from the set of relevant branches according to
Definition 2, is also maintained.

The algorithm iterates until the set of dependences with inser-
tion points converges (repeat-until in lines 4-20). Iteration is neces-

Benchmark | Function [Exec. % |

(a) Machine details.

Core Functional Units: 6 issue, 6 ALU, 4 memory, 2 FP, 3 branch adpemdec adpcm_decoder 100
L1I Cache: 1 cycle, 16 KB, 4-way, 64B lines adpcmenc adpem_coder 100

L1D Cache: 1 cycle, 16 KB, 4-way, 64B lines, write-through ks FindMaxGpAndSwap 100

L2 Cache: 5,7,9 cycles, 256KB, 8-way, 128B lines, write-back mpeg2enc dist1 58

Maximum Outstanding Loads: 16 177.mesa general textured_triangle 32

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines, write-back 181.mef refresh_potential 32
Main Memory Latency: 141 cycles 183.equake smvp 63
Coherence Snoop-based, write-invalidate protocol 188.ammp mm_fv_update_nonbon 79
L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction 300.twolf new_dbox_a 30
bus with round robin arbitration 435.gromacs inl1130 75

458.sjeng std_eval 26

(b) Selected benchmark functions.

Figure 6. Experimental setup.

sary in general because, to satisfy the input dependences of a thread
T;, other branches may become relevant to it. However, changing
the set of T;’s relevant branches can affect the best placement for
T;’s output dependences. That is because, to satisfy Property 2,
no communication is allowed on irrelevant points for the source
thread. Iteration can, however, be avoided in the special case when
G is acyclic, by computing the placement for a thread’s input de-
pendences before for its output dependences.

The for loop in lines 7-19 computes the placement of commu-
nication for each pair of threads connected by an arc in the thread
graph. As mentioned above, following a (quasi-)topological order
of G'r’s arcs here reduces the number of iterations of the repeat-
until loop. For each arc (Ts — T;) in Gr, the placement of
communication is computed as described in Sections 3.1.1 through
3.1.3 above. That is, each register is optimized separately, and all
memory dependences are optimized simultaneously. In each case,
optimizing the communication placement involves creating a flow
graph with costs on arcs, and then computing a min-cut in this
graph. A tuple indicating the register involved in the dependence
(or memory), its source and target threads, along with the commu-
nication insertion points computed, is then inserted in the set of
dependences. Finally, on line 17, the set of relevant branches for
the target thread is augmented to account for new branches that just
became relevant to satisfy some dependences.

Algorithm 2 is guaranteed to converge because the sets of rele-
vant branches are only allowed to grow, and the number of branches
in the region is obviously finite.

Similar to code generated by the original MTCG algorithm, the
code produced using COCO is also guaranteed to be deadlock-
free. In both cases, this can be proved using the fact that pairs of
produce and consume instructions are inserted at correspond-
ing points in the original code.

4. Evaluation

In this section, we describe our experimental setup and results. Our
experimental setup includes the compiler infrastructure in which
COCO was implemented, the target architecture, and the bench-
mark programs used. Based on these, we then present results that
demonstrate COCO’s effectiveness in reducing the communication
instructions and improving performance of the applications.

We implemented the COCO framework in the VELOCITY
compiler [25], a multi-threading research compiler that targets Ita-
nium 2. Two recently proposed global multi-threaded instruction
scheduling techniques are implemented in VELOCITY: GREMIO
and DSWP. To support these two techniques, VELOCITY uses the
MTCG algorithm. VELOCITY uses the front-end of the IMPACT
compiler [22] to obtain an assembly-level intermediate represen-
tation (IR). All traditional code optimizations are performed in

VELOCITY, as well as some Itanium 2 specific optimizations. The
global MT scheduling techniques in VELOCITY are performed
after traditional optimizations, before the code is translated to Ita-
nium 2’s assembly, where Itanium 2-specific optimizations are
performed, followed by register allocation and the final single-
threaded instruction scheduling pass.

To evaluate the performance of the code generated by VELOC-
ITY, we used a cycle-accurate CMP model comprising two Ita-
nium 2 cores. The cores are validated, with IPC and constituent er-
ror components accurate to within 6% of real hardware for bench-
marks measured [17]. In our model, the cores are connected by
the synchronization array communication mechanism proposed
in [19]. In Figure 6(a), we provide details about the simulator
model.

The synchronization array (SA) in the model works as a set of
low-latency queues. In our implementation, there are a total of 256
queues, each with a single element. For DSWP, which focuses on
pipeline parallelism, queues with 32 elements are used. The SA
has a 1-cycle access latency, and it has four request ports that are
shared between the two cores. The Itanium 2 ISA was extended
with produce and consume instructions for inter-thread com-
munication. These instructions use the M pipeline, which is also
used by memory instructions. This imposes the limit that only 4 of
these instructions (minus any other memory instructions) can be is-
sued per cycle on each core, since the Itanium 2 can issue only four
M-type instructions in a given cycle. While the consume instruc-
tions can access the SA speculatively, the produce instructions
write to the SA only on commit. As long as the SA queue is not
empty, a consume and its dependent instructions can execute in
back-to-back cycles.

For our experiments, we used the set of benchmarks that VE-
LOCITY is currently able to parallelize using either DSWP or
GREMIO, targeting two threads. These techniques were applied to
the applications from the MediaBench, SPEC-CPU, and Pointer-
Intensive benchmark suites that currently go through our tool-
chain. To reduce simulation time, the parallelization and simula-
tions were restricted to important functions in these benchmarks,
corresponding to at least 25% of the benchmark execution. In Fig-
ure 6(b), we list the selected application functions along with their
corresponding benchmark execution percentages. VELOCITY has
profile-weight information annotated on its IR, which was used for
the costs on the Gy graphs for min-cut. The profiles were collected
on smaller, train input sets, while the results presented here were
run on larger reference inputs.

In Figure 7, we show the percentages of dynamic communica-
tion instructions that execute with COCO applied, relative to the
codes using the original MTCG algorithm’s communication strat-
egy. The average reduction of the dynamic communication instruc-
tions was 34.4% tor GREMIO, and 23.8% for DSWP. The largest

100 100
.15 F B .15+ g
£ £
g r 1 g J
o o
O 50 B O 50 - B
2 Q
g r ~ g j
g g
g 25 L 1 £ 25 | 1
a | | a) |
® ®

(a) GREMIO (b) DSWP
Figure 7. Relative dynamic communication / synchronization instructions after applying COCO.
144 146
75 - 75 -
Il Basic MTCG Il Basic MTCG

§ [MTCG + COCO 1 _g* r I MTCG + COCO 1
g 50 1 g 50 b 1
w2 w
E < []
31 31
S 25 B S 25 B
= =
IS 4 ® 8 J

0 0

X N - = S O P F & ¢ 2 S ¥ L &S
& & & a8 o &S Qo*“b & S & & s & &
‘D-bQ ‘b-bQ &Q N) ’\)6% e} s ,§> (§> N ‘\C‘Q) \Qo b?’g)o &
(a) GREMIO (b) DSWP

Figure 8. Speedup over single-threaded execution, without and with COCO.

reduction occurred for ks with GREMIO (73.7%), where an inner-
loop whose only purpose was to consume a live-out could be com-
pletely removed from a thread, similar to the example in Figure 4.
In only one smaller case, adpcmenc with GREMIO, COCO had
no opportunity to reduce communication. COCO never resulted in
an increase in dynamic communication instructions. Only two ap-
plications, 177.mesa and 435.gromacs with GREMIO, had inter-
thread memory dependences. For both of these, COCO was able to
remove more than 99% of the dynamic memory synchronizations.

COCO had a smaller impact on codes partitioned by DSWP in
part because no inter-thread memory dependences can happen in
this case. That is because the PDG employed in this work uses
the results of a points-to static analysis [14]. And, since the in-
structions are inside a loop, any memory dependence is essentially
bi-directional, thus forcing these instructions to be assigned to the
same thread in order to form a pipeline [16]. With more powerful,
loop-aware memory disambiguation techniques to eliminate false
memory dependences, such as shape analysis or array-dependence
analysis, DSWP could benefit more from COCO.

In Figure 8, we present the speedups for the benchmarks par-
allelized with GREMIO and DSWP over their single-threaded ver-
sions. For each benchmark, two bars are illustrated: the first us-
ing the basic MTCG algorithm, and the second using MTCG with
COCO. In general, the speedups correlate with the reduction of dy-
namic communication instructions shown in Figure 7. The average
speedup for GREMIO improves by 15.6%, while the average im-
provement is 2.7% for DSWP. The maximum speedup is for ks with

GREMIO, for which COCO provided an extra 47.6% speedup. For
mpeg2enc, COCO optimized the register communication in various
hammocks, also significantly reducing the control flow in the gen-
erated threads. For the 435.gromacs benchmark, DSWP resulted
in a 2.44x speedup with MTCG, and 2.46x with MTCG+COCO.
The high speedups for this benchmark resulted from an effective
use of the doubled L2 cache capacity (the cores have private L2).
In general, COCO improves performance not only by reducing the
number of dynamically executed instructions, but also by increas-
ing TLP through the removal of memory synchronizations and con-
trol dependences. For memory synchronizations, the reason is that
the consume . sync instructions must wait for their correspond-
ing synchronization token to arrive. For control dependences, the
reason is that Itanium 2 uses a stall-on-use strategy, and control de-
pendences are implemented as replicated branches that actually use
their register operands. Removing register dependences has less ef-
fect because an outstanding consume instruction does not stall the
pipeline until its consumed register is actually used.

For a couple of cases, COCO, although reducing the communi-
cation instructions, degraded performance slightly. The reason for
this was a bad interaction with the later single-threaded instruction
scheduler, which plays an important role for Itanium 2. Two possi-
ble solutions are being investigated to avoid this problem. One is to
add, in the graph used for min-cut, penalties to arcs to take schedul-
ing restrictions into account. Another alternative is to change the
priority of the produce and consume instructions in the single-
threaded scheduler.

Our current implementation of COCO uses Edmonds-Karp’s
min-cut algorithm [4], which has a worst-case time complexity
of O(n x m?), where n and m are the number of vertices and
arcs in the graph, respectively. Since for CEGs m is usually ©(n),
this worst-case complexity approximates O(n?) in practice. In our
experiments, this algorithm performed well enough not to signif-
icantly increase VELOCITY’s compilation time. For production
compilers, faster min-cut algorithms can be employed if necessary.

5. Related Work

This section compares the communication optimizations used
by COCO to the most related work in the literature. Instruc-
tion scheduling for multi-threaded architecture is a relatively new
research topic. Two existing global MT instruction scheduling
techniques, DSWP [16] and GREMIO [15], are both based on
the MTCG algorithm. In the previous sections, we have already
showed the benefits of COCO for both these techniques. Although
not evaluated in this work, COCO should also benefit a recently
proposed technique that combines speculation with DSWP [27],
which also uses MTCG.

Local MT instruction (LMT) scheduling techniques differ from
the GMT in that they duplicate most of the program’s CFG for each
thread, thus mostly exploiting instruction-level parallelism within
basic blocks. Similar to GMT, LMT techniques also need to insert
communication instructions in order to satisfy inter-thread depen-
dences. The Space-Time scheduling [11] LMT technique uses sev-
eral simple invariants to make sure each thread gets the latest value
of a variable before using it. First, each variable is assigned to a
home node, which is intended to contain the latest value assigned
to this variable. Second, each thread/node that writes to that vari-
able communicates the new value to the home node right after the
new value is computed. Finally, at the beginning of each basic block
that uses a variable in a thread other than its home, a communica-
tion of this variable from its home node is inserted. This strategy
is somewhat similar to the one used in the original MTCG algo-
rithm, and other LMT techniques use similar approaches [12, 20].
Given their similarity to the original MTCG algorithm’s strategy,
they could also benefit from COCO to reduce the communication
instructions inserted.

For clustered single-threaded architectures, the scheduler also
needs to insert communication instructions to move values from
one register bank to another [2, 13, 29]. However, the fact that
dependent instructions are executed in different threads makes the
generation and optimization of communication more challenging
for multi-threaded architectures. The technique of [2] also uses
graph partitioning algorithms.

Another piece of related work is the compiler communication
optimization proposed for Thread-Level Speculation (TLS) [30].
There are several differences between the communication opti-
mizations for TLS and GMT scheduling. First, each thread in TLS
operates on a different loop-iteration, and therefore there are clear
notions of order and of which thread has the latest value of a vari-
able. Second, the communication between the threads is always
uni-directional for TLS. Third, each thread only receives values
from one upstream thread and sends values to one downstream
thread. All these differences make the problem for TLS signifi-
cantly simpler, so that algorithms based on partial redundancy elim-
ination (PRE) [9] can be used to minimize the communication. For
GMT scheduling, however, the problem is more complicated, and
PRE does not solve it. For instance, in the register communication
of r1 in Figure 5, there is no program point where 71 is down-safe
(i.e., it will surely be used after that) and that satisfies our safety
property (Property 3). The reason for this is that, depending on
which path is executed, a different thread will have the latest value
of rl.

Communication optimizations are also important for compiling
data-parallel applications for distributed-memory machines [1, 3,
8]. The main differences from the problem there and the one studied
in this paper are the following. First, there is an enormous discrep-
ancy in the parallelism available in the applications, and how the
parallelism is expressed by the programmer. This allows message-
passing compilers to concentrate on a more regular style of paral-
lelism, SPMD (single program multiple data), where all processors
execute the same code. The irregular structure and fine granularity
of the parallelism available in general-purpose applications require
GMT scheduling to exploit more general forms of parallelism.
Furthermore, the main communication optimization for message-
passing systems is communication combination, where multiple
messages are combined in a larger message to amortize overhead.
Since GMT scheduling uses a scalar communication mechanism,
these optimizations are not applicable in this context. In spirit,
the optimizations proposed in this paper are closer to redundancy
optimizations for distributed-memory systems. However, the tech-
niques for data-parallel codes are very different, being strongly
based on loops and array accesses and frequently unable to han-
dle arbitrary control flow [8]. Another optimization proposed for
message-passing systems is pipelining, where the message is sent
earlier than where it is consumed, in order to hide communica-
tion latency. This is somewhat accomplished in our techniques by a
combination of choosing the earliest min-cut placement (i.e. clos-
est to the source), and the stall-on-use implementation of the con-
sume instruction.

6. Conclusion

This paper presented optimizations that a compiler can perform to
reduce the communication instructions for global multi-threaded
(GMT) instruction scheduling. These optimizations improve the
Multi-Threaded Code Generation (MTCG) algorithm proposed
by Ottoni et al. [16], which can support any GMT scheduling
algorithm. This paper described COCO, a general framework to
optimize register, control, and memory inter-thread dependences.
COCO unifies all these optimizations using novel thread-aware
data-flow analyses and graph min-cut algorithms. Using a full
compiler implementation of COCO and a dual-core simulator
built on top of validated Itanium 2 core models, our experiments
demonstrated significant results for two previously proposed GMT
scheduling techniques, DSWP and GREMIO. COCO reduced the
number of dynamic communication instructions by 29.1% on aver-
age (up to 73.7%), resulting on an additional 9.2% average speedup
(up to 47.6%) for DSWP and GREMIO over the single-threaded
codes. Even though our evaluation was restricted to two threads
in this paper, we expect the benefits from COCO to be more pro-
nounced when more threads are generated. The reason for this is
that, as more threads are created, the larger the number of inter-
thread dependences to be respected, and therefore the larger the
fraction of communication instructions. Although not explored in
this paper, COCO can also be used to improve speculative exten-
sions of GMT scheduling techniques, as well as local MT schedul-
ing techniques. Finally, the techniques developed in this work, in-
cluding thread-aware data-flow analyses and the use of graph min-
cuts to model communication, may be useful in other contexts as
well.

Acknowledgments

We thank the entire Liberty Research Group for their feedback dur-
ing this work. Additionally, we thank the anonymous reviewers for
their insightful comments. The authors acknowledge the support
of the GSRC Focus Center, one of five research centers funded
under the Focus Center Research Program, a Semiconductor Re-

search Corporation program. This work has been supported by In-
tel Corporation. Guilherme Ottoni is supported by an Intel Foun-
dation Ph.D. Fellowship. Opinions, findings, conclusions, and rec-
ommendations expressed throughout this work are not necessarily
the views of our sponsors.

References

[1] S.P. Amarasinghe and M. S. Lam. Communication optimization and
code generation for distributed memory machines. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 126-138, 1993.

[2

—

A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register files for
VLIWSs: a preliminary analysis of tradeoffs. In Proceedings of the
25th Annual International Symposium on Microarchitecture, pages
292-300, 1992.

[3] S. Chakrabarti, M. Gupta, and J.-D. Choi. Global communication
analysis and optimization. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 68-78, 1996.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. The MIT Press and McGraw-Hill, 1990.

[5] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Transactions
on Programming Languages and Systems, 9:319-349, July 1987.

[6] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W H Freeman & Co, New
York, NY, 1979.

[8] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and
N. Shenoy. A global communication optimization technique based
on data-flow analysis and linear algebra. ACM Trans. Program. Lang.
Syst., 21(6):1251-1297, 1999.

[9] J. Knoop, O. Riithing, and B. Steffen. Lazy code motion. In
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 224-234, June 1992.

[10] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism.
In Proceedings of the 19th International Symposium on Computer
Architecture, pages 46-57, May 1992.

[11] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar,
and S. P. Amarasinghe. Space-time scheduling of instruction-
level parallelism on a Raw Machine. In Proceedings of the Sth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 46-57, 1998.

[12] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Convergent
scheduling. In Proceedings of the 35th Annual International
Symposium on Microarchitecture, November 2002.

[13] E. Nystrom and A. E. Eichenberger. Effective cluster assignment
for modulo scheduling. In Proceedings of the 31st International
Symposium on Microarchitecture, pages 103—114, December 1998.

[14] E. M. Nystrom, H.-S. Kim, and W.-M. Hwu. Bottom-up and top-down
context-sensitive summary-based pointer analysis. In Proceedings of
the 11th Static Analysis Symposium, August 2004.

[15] G. Ottoni and D. I. August. Global multi-threaded instruction
scheduling. In Proceedings of the 40th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 56—68, December
2007.

[16] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread
extraction with decoupled software pipelining. In Proceedings of
the 38th IEEE/ACM International Symposium on Microarchitecture,
pages 105-116, November 2005.

[17] D. A. Penry, M. Vachharajani, and D. I. August. Rapid development
of a flexible validated processor model. In Proceedings of the 2005
Workshop on Modeling, Benchmarking, and Simulation, June 2005.

[18] R. Rangan, N. Vachharajani, A. Stoler, G. Ottoni, D. I. August,
and G. Z. N. Cai. Support for high-frequency streaming in
CMPs. In Proceedings of the 39th International Symposium on
Microarchitecture, pages 259-269, December 2006.

[19] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August.
Decoupled software pipelining with the synchronization array. In
Proceedings of the 13th International Conference on Parallel Ar-
chitectures and Compilation Techniques, pages 177-188, September
2004.

[20] K. Rich and M. Farrens. Code partitioning in decoupled compilers. In
Proceedings of the 6th European Conference on Parallel Processing,
pages 1008-1017, Munich, Germany, September 2000.

[21] V. Sarkar. A concurrent execution semantics for parallel program
graphs and program dependence graphs. In Proceedings of the 5th
International Workshop on Languages and Compilers for Parallel
Computing, 1992.

[22] J. W. Sias, S.-Z. Ueng, G. A. Kent, I. M. Steiner, E. M. Nystrom,
and W. mei W. Hwu. Field-testing IMPACT EPIC research results
in Itanium 2. In Proceedings of the 31st Annual International

Symposium on Computer Architecture. IEEE Computer Society,
2004.

[23] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors.
In Proceedings of the 22th International Symposium on Computer
Architecture, June 1995.

[24] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal. Scalar
operand networks. IEEE Transactions on Parallel and Distributed
Systems, 16(2):145-162, February 2005.

[25] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni, and D. I. August.
A framework for unrestricted whole-program optimization. In
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 61-71, June 2006.

[26] N. Vachharajani, M. Iyer, C. Ashok, M. Vachharajani, D. I. August,
and D. A. Connors. Chip multi-processor scalability for single-
threaded applications. In Proceedings of the Workshop on Design,
Architecture, and Simulation of Chip Multi-Processors, November
2005.

[27] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni,
and D. I. August. Speculative decoupled software pipelining.
In Proceedings of the 16th International Conference on Parallel
Architectures and Compilation Techniques, September 2007.

[28] Y. Wu and J. R. Larus. Static branch prediction and program profile
analysis. In Proceedings of the 27th Annual International Symposium
on Microarchitecture, pages 1-11, December 1994.

[29] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Modulo scheduling
with integrated register spilling for clustered VLIW architectures. In
Proceedings of the 34th Annual ACM/IEEE International Symposium
on Microarchitecture, pages 160-169, 2001.

[30] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler
optimization of scalar value communication between speculative
threads. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 171-183, 2002.

[31] C. Zilles and G. Sohi. Master/slave speculative parallelization.
In Proceedings of the 35th Annual International Symposium on
Microarchitecture, 2002.

