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ABSTRACT
Network processors provide an economical programmable
platform to handle the high throughput and frame rates of
modern and next-generation communication systems. How-
ever, these platforms have exchanged general-purpose capa-
bilities for performance.

This paper presents an alternative; a software network
processor (Soft-NP) framework using commodity general-
purpose platforms capable of high-rate and throughput se-
quential frame processing compatible with high-level lan-
guages and general-purpose operating systems. A cache-
optimized concurrent lock free queue provides the necessary
low-overhead core-to-core communication for sustained se-
quential frame processing beyond the realized 1.41 million
frames per second (Gigabit Ethernet) while permitting per-
frame processing time expansion with pipeline parallelism.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
software network processor, parallel programming, multi-
core, multiprocessors

1. INTRODUCTION
An ideal frame/packet processing platform would permit

an application to sequentially process frames at line-rate and
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expand the available per-frame processing time with paral-
lelism. The ability to process frames sequentially is impor-
tant as an increasing number of systems use state that is
updated as each frame is processed. Example systems in-
clude network intrusion detection systems and any requir-
ing upper layer packet processing [35]. Time expansion, the
ability to trade latency for processing time while maintain-
ing throughput, is similarly important as modern networks
can sustain traffic with frame interarrival periods on the or-
der of 10’s to 100’s of nanoseconds.

Simultaneously supporting both time expansion and se-
quential processing, in the limit, requires a pipeline-parallel
platform. Note that a connection- or data-parallel environ-
ment is insufficient for scenarios requiring stateful inspection
of every frame in sequence. The difficulty is that pipeline
parallelism’s design requires that every stage consumes no
more than the minimum arrival time for every given frame
size to accomplish work and stage-to-stage communication.

In the past, designers turned to fully custom processing
engines to satisfy these requirements. Recently, however, de-
signers have shifted to special purpose programmable plat-
forms (e.g., network processors). This shift has dramat-
ically reduced both the cost and time needed to develop
a system. Unfortunately, these special purpose platforms
typically expose excessive low level platform-specific imple-
mentation details that developers must properly manage to
achieve full performance. For example, network processors
typically scale the memory wall [37] and achieve the perfor-
mance constraints imposed by modern networks by expos-
ing their architecture to the developers. Exposed elements
have included processor interconnections, explicitly man-
aged memory hierarchies, and lightweight threading. Thus,
developers are forced to forgo the niceties of general pur-
pose languages and traditional operating system support.
These details complicate application development and harm
portability by coupling the software to a specific platform.

Recently, researchers have found that the performance of
caches (as found on general purpose processors) outperform
specialized memories and exposed memory hierarchies [19,
28]. Furthermore, general purpose systems have begun to
borrow from the designs of special purpose systems, while
still supporting standard languages and operating systems.
For example, general purpose processor designers now focus
on multi- and many-core designs and improving intercon-



nection performance [1,2,7,34]. This focus has given rise to
systems incorporating high performance crossbars, switched
fabrics, and heterogeneous computing environments.

This paper presents the Frame Shared Memory (FShm)
software network processor (Soft-NP) architecture. FShm
exploits modern multicore general purpose commodity plat-
forms to deliver high-rate frame processing comparable to
those of special purpose platforms with reduced developer
effort. FShm uses each core on a multi-core system to imple-
ment individual stages in a processing engine. To minimize
stage-to-stage communication delays, FShm uses FastFor-
ward, a new cache-optimized concurrent lock-free queue [13].
Because FastForward relies only on shared memory and cache
coherence, it can link processing stages that are inside an
operating system’s kernel, user-space applications, or any
other device connected to the memory interconnect. Notice
that since any memory connected device can be a processing
stage, application designers can substitute a hardware stage
for a software stage and vice-versa without altering any of
the other processing stages (e.g., on-die special purpose pro-
cessors [1], network processors [38], or FPGAs [6]).

This paper concludes that general purpose systems are a
viable alternative to network processors and may continue
to be so as general purpose systems evolve. FShm on a
2.0 GHz AMD Opteron with PCI-X network interface cards
is capable of supporting frame capture and generation at
1.41 million frames per second, and nic-to-nic forwarding at
1.36 million frames per second, sufficient for line-rate pro-
cessing of 74B and larger frames on Gigabit Ethernet. Fur-
ther we show that the architecture can support substantially
higher frame rates as defined by the input medium and de-
sired processing time.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the criteria considered when designing FShm.
Section 3 discusses the operating system and hardware con-
straints that were addressed in the FShm design. Section 4
surveys previous work. Section 5 discusses the FShm’s soft-
ware architecture in detail. Section 6 presents the evaluation
results. We conclude in Section 7.

2. DESIGN CRITERIA
Frame Shared Memory (FShm) is designed to meet a col-

lection of constraints that balance the need for high per-
formance in research and deployment of frame processing
systems against the flexibility offered by general purpose
systems. The first two constraints establish the baseline per-
formance for research and deployment of frame processing
applications on current and next generation networks.

1. Frame capture, generatation, and forwarding at rates
close to the communication system’s limits.

2. Real per-frame work must be possible for all frames at
all legal sizes.

FShm’s design is further constrained to ensure a general-
purpose framework. These constraints focus on several prop-
erties common to many network applications and develop-
ment environments.

3. A general purpose mechanism must be available to
exchange latency for increased per-frame processing
time. Modern and future processors are unlikely to
individually have the processing time to support the

high-rates available on next generation communica-
tion systems, such as 10 gigabit Ethernet where a new
frame may arrive every 67 ns.

4. In- or out-of-order frame processing must be possible
without noticeable performance impact. In-order pro-
cessing is desirable for network intrusion detection sys-
tems, while out-of-order processing is desirable to im-
plement quality-of-service in routers.

5. Composing frame processing stages into an application
must be straightforward [18]. Ideally, software and
hardware stages should be composable.

6. High-level languages and operating system environ-
ments must be supported to enable rapid application
development and deployment.

3. SYSTEM CONSTRAINTS
The criteria in Section 2 are challenging for any system

and require managing system specific elements. On general-
purpose systems there are two primary concerns, the host
operating system and the underlying hardware. Both con-
cerns must be managed in the least invasive way possible
to ensure the system remains general-purpose, is not micro-
managed into a special-purpose system, but still meets per-
formance requirements.

The primary performance constraint is the potentially high
frame-rates imposed by the network itself. These rates can
easily result in livelock [27] or dropped frames if a system’s
general-purpose mechanisms exceed the interframe arrival
period. On Gigabit Ethernet there maybe up to 1,488,095
frames per second, a new frame every 672 ns. On 10 Gi-
gabit Ethernet, the situation is 10× worse with only 67 ns
between frames. As we will see, both the software and hard-
ware layers of general-purpose systems must be managed to
manage these frame rates.

3.1 Operating System Constraints
General-purpose operating systems focus on efficiently pro-

viding a wide range of services to a mixed set of users. This
design trade off has, until now, relegated high-rate frame
processing applications to special-purpose systems. The key
is to subvert only those performance critical features without
affecting other system tasks.

Thread pinning (i.e., dedicating a processor to a particu-
lar thread) for indefinite periods is a necessary feature for
high-rate frame processing. Without thread pinning, sched-
uler activity can cause enough processing time jitter to force
frame drops at high frame rates; no amount of queuing or
slack can accommodate these disruptions. Interrupts on pro-
cessors running FShm nodes are disabled for similar reasons.
Fortunately, most modern operating systems provide this
feature.

Instead, the major operating system constraint results
from safety guarantees for general-purpose interprocess com-
munication. Systems traditionally enforce safety via copy se-
mantics on all communication. These safety guarantees are
a burden when frequently communicating parties are closely
coupled. Below we discuss the impact of various features
used to enforce safety including system calls for communi-
cation, locks for safe data exchanges, and providing copy
semantics concluding that they must be avoided.



3.1.1 System Calls
System calls provide the traditional mechanism to bypass

an application’s protected memory space and interact with
both operating service and other processes. For most inter-
actions, the overhead of system calls is irrelevant as their
cost is negligible compared to the interaction itself. How-
ever, this is not the case when handling the frame rates on
modern communication systems. Experimentally we found
that system calls on a dual-processor dual-core 2.0 GHz
AMD Opteron 270, running FreeBSD 5.5 took on average
170 ns or 25.5% of the arrival period of a 64B frame on
Gigabit Ethernet. Passing frames with an ioctl, or other
operations interacting with the VFS layer, is a worse option
as overheads are usually higher.

3.1.2 Mutual Exclusion
Once a protected memory space has been entered in a con-

trolled fashion, some form of mutual exclusion, often a mu-
tex, is typically used for safe access to a shared data struc-
ture. While such mechanisms ensure safety, they serialize
any threads attempting to access the protected data, cou-
pling their execution. Additionally, the mutex overhead is
high, even in the optimal situation where any necessary code
and data are cache-resident and there is no contention. Ex-
perimentally we found that an empty lock/unlock pair took
≈ 160 ns for user-space pthread locks and ≈ 27ns for kernel
level locks on the previously described AMD Opteron. Note
that the minimum overhead of sharing a variable between
two threads is double the cost of a single lock/unlock pair
since both the reader and writer must lock the data structure
when performing their operations. Assuming this unrealis-
tically optimal scenario, the expected cost of a lock/unlock
pair is on the order of 318 ns for user→kernel/user or 54 ns
for kernel→kernel/user communication, a substantial por-
tion of the per frame time budget on Gigabit Ethernet or
higher-rate networks.

3.1.3 Copy Semantics
Traditionally, copy semantics have been used to ensure

safe operation of communicating parties as both threads will
have separate copies of the data after a communication. In
some cases the copy overhead can be minimized by using
a variety of zero-copy techniques [17] and/or by the sender
relinquishing access to the transmitted data [9]. However,
in all cases the overhead is non-negligible as the hardware
memory management unit needs to be updated, an action
requiring privileged hardware access.

3.1.4 Avoiding Operating System Constraints
Because these 3 constraints are difficult to manage, FShm

and other recent prior work [23, 32] subvert some of these
interfaces to improve performance. In particular, shared
memory and concurrent lock-free data structures [13,26] are
used to accomplish the necessarily low-overhead interpro-
cess communication. Neither has an effect on the rest of the
system’s operation and thus meet the needs of our desired
criteria.

3.2 Hardware Constraints
Hardware design provides interesting bottlenecks that are

more difficult to control than the OS bottlenecks described
above. The overall system I/O architecture and memory
subsystem play the most significant role. The processor and
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memory interconnects and local-bus adapter cause most is-
sues, and thus discussed below. However, since it is difficult
for software techniques to mitigate these bottlenecks, they
ultimately limit the performance of any system.

3.2.1 Processor Interconnects
Consider the potential bottlenecks in Figure 1 and Fig-

ure 2. In the host bus architecture, the primary potential
bottleneck is the shared communication bus between the
two processors. This shared bus may be problematic since
access to memory, access to snoop results from other pro-
cessors, and access to the PCI bus all contend for the same
interface.

The switched system architecture shown in Figure 2 is an
improvement over the bus-based architecture in that mul-
tiple independent data transactions need not interfere. For
example, depending on the network topology in the switched
cloud, it is possible for a processor to access main-memory
while another processor services a cache snoop request. This
reduces the contention for limited system resources, how-
ever, bottlenecks may still exist and multiple hops may be
necessary since switched interconnects, such HyperTrans-
port, are typically not implemented as full crossbars.

3.2.2 The Local-Bus Adapter
Even if the system interconnect is not a problem, the in-

ternal organization of the local-bus adapter can limit perfor-
mance. For example, it may be the case that a PCI device
on one bus cannot DMA to memory at the same time that a
processor wishes to deliver a command to another PCI bus.
Other issues in the design, such as interrupt scheduling and
command latency, can also have significant impact on total
achievable throughput to NICs on the PCI bus.

Table 1 compares the number of minimum size Ethernet
frames that can be generated on a Pentium III system and
Pentium 4 Xeon system with Linux pktgen [29]. Notice that



PCI Frame Max
System NIC Bus Size Frames/s

1.0 GHz Intel 64-bit
PIII 82545 GM 66 MHz 64B 811 kfps

2.66 GHz Intel 64-bit
P4 Xeon 82545 GM 133 MHz 64B 723 kfps

Table 1: Pentium Throughput Comparison.

the Pentium III system has a slower PCI bus, is a slower
processor, and yet can place frames on the network faster
than the Pentium 4 Xeon system1. However, the Pentium
III system contains a high-end server motherboard that uti-
lizes the ServerWorks HE-SL chipset, whereas the Pentium 4
Xeon has a standard motherboard. Here, the chipset makes
all the difference.

3.2.3 Handling Hardware Constraints
Fortunately, despite these constraints, we will see that

with FShm modern on commodity systems can still deliver
Gigabit Ethernet performance, with strong evidence that
higher frame rates are possible (see Section 6). This is due,
in part, to the ability of hardware prefetch units to lever-
age the temporal slip discussed in [13] and that ensure is
data waiting in the processor’s caches. Further, the situa-
tion should improve as interconnect performance improves
in response to the demands of traditional applications.

4. RELATED WORK
Previous efforts focused on maximizing hardware resource

utilization, typically to improve the cost effectiveness of the
computing platform. FShm, in contrast, focuses on maxi-
mizing the performance of a specific class of applications,
communications systems, by monopolizing the necessary re-
sources without impacting general purpose functionality.

FShm achieves its performance while maintaining a gen-
eral purpose computing platform by synthesizing a new gen-
eral structure for high-rate computation from subcompo-
nents of a rich body of work. Areas of influence include
operating system design [11, 15, 24, 31], general purpose in-
terprocess communication and message passing [3, 5, 9, 10,
17, 30], general purpose networking on commodity hard-
ware [14, 18, 25, 36], general purpose high-performance net-
working [4, 8, 10, 16, 32, 33], and concurrent lock-free data
structures [13,20,21,26].

From this body of prior work Synthesis, Lamport’s CLF
Queue, FastForward, NetTap, nCap, ETA, and Click are
most closely related to portions of FShm, and thus will be
examined below.

The Synthesis Kernel [24] achieved dramatic results in the
area of high-rate processing on one- and two-processor ma-
chines. The key to success was the hyper-optimization of
the system with CLF queues, control theory based thread
scheduling, auto-generated routines to minimize overhead
(e.g., context swap routines), and online assembly recom-
pilation and autotuning. The Synthesis lesson is that dra-
matic performance improvements can be had by maximizing
the utilization of the system through micro-management of
all system aspects. Unfortunately, the entire operating sys-
tem was hand-coded in assembly on a custom machine and

1FShm shows the same trends on these systems.

thus does not qualify as a commodity general purpose sys-
tem. However, FShm does borrow the notion of fine-grain
pipeline parallelism from Synthesis.

Lamport described a point-to-point CLF queue and proved
its correctness under sequential consistency [12, 21], and is
used in Synthesis. However, this queue has two undesirable
properties. First, communicating processors are not decou-
pled on cache-based systems, incurring significant overhead
due to cacheline thrashing. Second, it is unlikely to work on
future systems with very relaxed consistency models. For-
tunately, FastForward [13] is a CLF queue that addresses
both issues; FastForward’s role in FShm is discussed in Sec-
tion 5.2.

Both FShm and NetTap [4], an existing system to permit
high-rate user-space processing of packets, use CLF queues
and shared memory to communicate between kernel and
user-space contexts. However, NetTap focused on providing
a specific API that while correct on multi-processors, em-
ployed spin-locks for correctness, and was optimized for the
single processor machines that were available on the com-
modity market at the time. Unfortunately, the API was
designed for a single application stage and thus does not
meet criteria 3 and 5 (Section 2). FShm instead concerns
itself with providing a general purpose API designed to ef-
ficiently utilize multi-processor and multicore homogeneous
or heterogeneous commodity systems.

Another related system is the nCap [8] frame processing
system. Frame buffers are efficiently shared with a user-
space application by mapping the transmit and receive ring
buffers of the network card into a shared memory region.
While this technique is the most lightweight of any, it fails
to meet criteria 3, 4 and 5 as copies are required. Further,
interface-to-interface forwarding also requires a copy.

Recently Intel has been working on ETA [33], an exten-
sion of the Virtual Interface Architecture [10] and Infini-
Band [16]. The goal is to accelerate the processing of pack-
ets by dedicating a processor to act as a TCP/IP onloading
engine [32]. This processor would preprocess packets and de-
liver them to applications through a set of queue structures
with an interface optimized for TCP/IP. ETA extended Pen-
tium 4 Xeon processors with two new interesting facilities
that would be of general interest, first they implemented a
light-weight threading systems as well as a cache-push in-
struction. FShm would benefit greatly from the cache-push
and application developers would benefit from the light-
weight threading. However, ETA fails to meet criteria 3
and 5 as it is very TCP/IP centric and does not facilitate
parallelism beyond the TCP processing. Further, ETA was
not evaluated on small frames.

Finally, the Click Modular Router [18] is a network pro-
cessing architecture with goals similar to those of the FShm.
However, to maintain portability, they suffer in user-space
performance as they rely on available libpcap [22] libraries
for frame input and output. Ideally Click modules will be
implemented using the FShm architecture to provide low-
overhead inter-process communication and thus avoiding the
need to push Click modules into the kernel for performance.

5. FSHM DESIGN
This section presents the design of the Frame Shared Mem-

ory software network processor (Soft-NP) architecture. FShm
leverages multicore general purpose systems with the Fast-
Forward concurrent lock-free queue by Giacomoni et al. [13]
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to realize a high-rate software system capable of scaling to
millions of frames per second on commodity hardware.

Meeting the performance and functionality criteria enu-
merated in Section 2 requires that FShm not only operate
at line-rate while doing useful work, but that it is possible
to expand per-frame processing time, process frames in any
desired order, be modular, and interoperate with languages
and service available on general purpose systems. To max-
imize available work time and compatibility with existing
interfaces, FShm only has the minimal communication sup-
port and organizational structure necessary. Specifically the
framework consists of an implementation of the FastForward
queue, a networking specific pipeline balancing routine, a
BSD mbuf compatible shared buffer wrapper, and stream-
line drivers. The application developer is therefore freed to
construct any desired pipeline or frame processing graph.

The design is discussed below in terms of its components,
beginning with a discussion of a basic processing pipeline
implemented using FShm and its extension to more general
designs. Section 5.2 discusses how FShm utilizes the Fast-
Forward to achieve it’s performance. Section 5.3 discusses
the necessary shared frame buffer extension. Section 5.4
discusses the streamlined drivers used by FShm. Section 5.5
concludes the design section by discussing the safety issues
implicit in eliminating interprocess copy semantics.

5.1 The FShm Pipeline
FShm’s ability to sequentially process small frames at line-

rate comes from its pipeline parallel design allowing for ex-
panded per-sequential-frame processing time. Note that the
communication mechanism, described in Section 5.2, allows
for more general parallel processing organizations.

Figure 3 depicts an overview of the three basic stages
in a FShm processing pipeline. The basic stages are In-
put (IP), Application (APP), and Output (OP). There are
two degenerate cases where there is no IP or OP stage corre-
sponding to frame generation and frame capture systems re-
spectively. The pipeline timing diagram is realized by bind-
ing each stage to a processor and connecting them with the
provided low overhead stage-to-stage communication mech-
anism (not depicted). From this figure we can see that in
the ideal case where each stage takes the same amount of
time, it is possible to triple the throughput of the system by
simply overlapping sequential data on each stage.
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Typically, this results in triple the available per-frame pro-
cessing time as the rate is externally imposed by the net-
work. This can be achieved by permitting each stage in the
pipeline to consume the full inter-frame arrival time (minus
any communication overhead). Extending this pipeline to
four or more processors permits the stages to be split into
sub stages, each of which could consume the full inter-frame
arrival time but permit additional processing time. There-
fore it is possible to trade off per-frame latency for more
processing time without impacting the throughput.

Extending the pipeline to data-parallel or other parallel
organizations is straight forward and simply requires con-
necting stages in other organizations. Figure 4 depicts a
three stage pipeline with a 2-way data-parallel application.
The difference between Figures 3 & 4 is that the APP phase
has been duplicated and the IP and OP stages access each of
the stages in a synchronized round-robin fashion. This orga-
nization permits each APP phase to consume twice the inter-
frame arrival rate without affecting the system’s throughput
or frame rate. The pipeline timing diagram confirms this.
The obvious caveat of a data-parallel organization is that
maintaining shared state between frames may be impossible
at high-frame rates.

The two main challenges in realizing an FShm design are
(1) balancing stage execution time to guarantee maximal
throughput and (2) minimizing stage-to-stage communica-
tion delay. Since, in reality, the IP, OP, and APP stages
may not have the same duration, resulting in an unbalanced
pipeline. However, even in the case of slight imbalance in
stage timing, it is still possible to increase throughput albeit
sub-optimally. Minimizing stage-to-stage delay is discussed
below.

5.2 Stage-to-Stage Communication
Managing stage-to-stage communication overheads is crit-

ical in high-rate applications as any overhead becomes pro-
portionately more expensive as the rate increases and in-
terframe arrival time decreases. To minimize communica-
tion overhead, FShm uses the FastForward CLF queue [13].
FastForward provides very low overhead operations with
sub-memory access latencies. Furthermore, stage-to-stage



1 put_nonblock(...) {
2 if (NULL == queue[head])
3 {
4 queue[head] = ptr;
5 head = NEXT(head);
6 }
7 }

Figure 5: CLF Queue: Put nonblocking

communication is the same regardless of whether the com-
munication is intra- or interprocess. Finally, the queue in-
terface is abstracted so that it is straightforward to replace
the communication queues without needing to recompile the
stages (criteria 5 & 6).

5.2.1 FastForward Tuning
FastForward achieves its performance by fully decoupling

its operations at the data structure level by ensuring that
in the steady state it is not necessary to share cachelines.
In contrast Lamport’s queue [21] compares head and tail
indices for every operation forcing cache line transfers for
every operation in the steady state. Further, unlike other
CLF queues, FastForward relies only on cache coherence for
correct operation and is thus correct on strong to weakly
ordered memory consistency models that will be found on
future large multicore commodity systems.

While these features make FastForward appealing there
are two primary concerns in using FastForward. First, there
is a potential engineering tradeoff. To see why this is not an
issue with FShm, a quick review of the FastForward algo-
rithm is necessary. Figure 5 contains the pseudo-code frag-
ment of the non-blocking put routine. The performance gain
over Lamport’s queue [21] is realized by preventing both the
putter and the getter from competing for exclusive cache
access to (1) the head and tail indices, and (2) the data
buffer itself (queue in the figure). The head-tail decoupling
is done by using the data array itself to maintain full/empty
status. Thus, the putter need only reference head, and the
getter need only reference tail. This works transparently
and is of no special concern in FShm.

To avoid conflict on the data buffer (queue), FastForward
requires (for performance) that enough elements are in the
queue so that the producer (putter) and consumer (getter)
are operating on different cachelines, thus decoupling op-
eration as described in [13]. This has the immediate ef-
fect of increasing latency but dramatically increasing per-
formance. Fortunately, this buffering requirement is also
needed in FShm to account for interstage jitter and differ-
ent frame sizes flowing through the pipeline. Therefore for
the purposes of FShm, this latency/throughput tradeoff is
not an issue, provided that this producer-consumer separa-
tion can be maintained. However, to maintain a minimum
number of elements in the queue the pipeline stages must be
time-balanced, otherwise a faster stage will empty the queue
and cause performance degradation.

5.2.2 Automatic Pipeline Balancing
Unbalanced pipelines are present in all but the most micro-

managed pipelines and must be handled efficiently. Typi-
cally FShm stages will be unbalanced relative to each other
for any given frame size. In most situations polling one’s
input or output queue will automatically introduce the nec-

essary stalls to keep the pipeline implicitly balanced (on av-
erage) by stalling on full and empty queues. However, Fast-
Forward’s performance depends on a minimum amount of
queuing between a queue’s producer and consumer.

Two step are necessary to ensure the stages remain bal-
anced while processing network frames. First, each stage
needs to ensure that the most of the minimum frame ar-
rival period for each frame size is consumed, thus narrowing
the stage length variations to a minimum. We accomplished
this by reading the frame size and spinning on a time stamp
counter (e.g., TSC in x86) to consume any additional time.
Note that one should not consume the entire period as then
it becomes impossible to recover from the effects of jitter
causing a computation to overrun that frame’s arrival pe-
riod. Second, one must ensure that sufficient distance is
maintained between a stage and its producer. We accom-
plished this by periodically (adaptively 64 to 128 frames)
polling the producer’s head index and computing the dis-
tance from the local tail index. If the distance is below a
low watermark (i.e., dangerously close to the FastForward
threshold), we spin on the TSC until the distance has in-
creased to the desired average distance (≈48 entries or 6
cachelines). Note that excessive distance unnecessarily in-
creases latency. It is also useful to introduce a trapdoor
into the spinning process to ensure forward progress is made
when the line is not saturated. The loss of slip in these sit-
uations is acceptable as we have extra time between frames.
These techniques were used in the evaluation.

5.3 The Shared Frame Buffer Wrapper
To maintain compatibility with the host operating sys-

tem (FreeBSD in this implementation), simplify interfac-
ing with existing network drivers, and permit the frames
to be routed to any system component, the FShm drivers
wrap each frame buffer with a BSD mbuf compatible header
adding a level of indirection to access the payload. Addi-
tionally, FShm tracks these frames by their kernel address
as FreeBSD does not permit the mapping of kernel memory
addresses to user-space processes. In practice we found the
overhead for both to be acceptable.

For increased performance it may be advantageous to add
the BSD mbuf compatible header in a lazy fashion to elimi-
nate the level of indirection when not necessary. Notice that
the indirection is a tool used to interface with the host OS
and is not a limitation of the FShm architecture itself.

5.4 Streamlined Drivers
The drivers used in FShm are the stock FreeBSD drivers

that have had a direct access API introduced and been
lightly modified to remove processing best handled by the
network processing application. Effort was put into main-
taining general functionality of the stock drivers to allow
the same driver assume either FShm behavior or normal be-
havior that forwards to the operating system network stack.
The direct access API provides a set of interface routines
that permit direct manipulation of the interface’s transmit
and receive descriptors from within the kernel. Further the
transmit and receive interfaces were decoupled so that differ-
ent modules can manipulate each set of descriptors without
synchronization. It is also expected FShm wrappers will be
created for intelligent interfaces providing direct user-space
access and thus bypassing the standard operating system.
We chose to focus supporting simple network interfaces to



Handler

Input
Stage

NIC NIC

Queue

Queue
(Alloc)

Queue

Output 
Stage

Figure 6: Evaluation Forwarding Pipeline

permit the ready use of the operating system provided stack.
Additionally, the FShm drivers disable interrupts and expect
the system to be polled. We plan to implement a hybrid in-
terrupt/polled management system to conserve energy and
allow for other tasks to be accomplished while the network
is idle.

5.5 Safety
Safety is a critical concern when sharing memory and pass-

ing memory references between processes. Any process at
any time can misbehave and write invalid and or inconsistent
values into the memory so that a correctly behaving process
reads it and does the wrong thing. Examples of errors are
writing an invalid address causing the reading process to ex-
amine the wrong memory and failing to ensure group-write
operations are atomic in nature.

The design of FShm incorporates several levels of protec-
tion. First, acquiring access to the queues is through device
entries and thus gains the underlying security model main-
tained by the host operating system. Second, the queues
are in a separate shared-memory region from the sbuf re-
gions and the sbuf regions are split into an sbuf region and
a data region. This division makes it possible for the kernel
to share the sbuf header as read-only with user-space appli-
cations preventing the applications from corrupting the sbuf
header itself (e.g., corrupting data pointers or the reference
count field). This permits the application to only manipu-
late the frame data or the reference in the queue. Corruption
of the frame data is not a concern for the kernel as it does
not process it. However, corrupting the sbuf reference in the
queue is a concern and can be dealt with by checking the
address against the known bounds of the FShm sbuf region.
Premature processing of a frame in the kernel is also not
a concern for the kernel itself as the worst case scenario is
transmission of a garbage frame resulting in application fail-
ure but not system failure. Bounds checking can easily be
performed in the available time for processing at any frame
size as all the necessary information will be resident in the
first level cache or registers.

6. RESULTS
To evaluate FShm we evaluate its performance on Gigabit

Ethernet and then evaluate the architecture against higher
frame rates.

First, we determine the maximum frame generation, cap-
ture, and forwarding rates possible without dropping any
frames during a 1,000,000 test frame sequence on Gigabit
Ethernet. Each scenario has a 3 stage pipeline with one or
more application stages that simulate work by spinning on

the x86 time stamp counter (TSC) to measure wall clock
work time. The TSC measures elapsed cycles since boot in
a 64bit register and is accurate to within a few cycles on our
systems. Additionally there maybe an input and/or an out-
put stage which manage the network interfaces. The input
stage also measures the time available for work. Figure 6
depicts the evaluated forwarding pipeline; generation and
capture scenarios are obvious variants of this simple pipeline
and described below. The test stages are labeled as follows:
(A) for an application stage, (I) for an input stage, (O) for
an output stage, and (G) for a stage encoding frames into
the buffers.

Second, we extrapolate the performance on higher-rate
networks by using the values measured in the Gigabit Eth-
ernet evaluation. Specifically we found that the queue time
in the application stages was sufficiently constant to con-
nect three application stages in a loop and doing a specified
amount of work per stage.

6.1 Evaluation Platform
The network testing environment consisted of two AMD

Opteron systems based on the Tyan Thunder K8SR (S2881)
motherboard with dual Opteron 270 dual-core processors
running at 2 GHz. The relevant chipsets on this moth-
erboard are the AMD-8131 (HyperTransport PCI-X Tun-
nel) and the AMD-8111 (HyperTransport I/O Hub). For
networking, off-board HP NC7771 (Broadcom 5703), Intel
PRO/1000 (82544 EI and Intel 82545 GM) network inter-
face cards were used in the 133 MHz and 100 MHz PCI-X
slots that were on two separate PCI-X busses. The evalu-
ation target used the two Intel cards, while the load gen-
eration host used the Broadcom card. We used two intel
cards in the evaluation host to maintain experimental sym-
metry. Note that this system has a switched interconnect
architecture such as the one in Figure 2.

6.2 Frame Generation
The generation scenario measures how well FShm allows

kernel-space and user-space code to generate frames for trans-
mission. For this set of experiments, one Opteron system
(the evaluation target) running FShm is used as a frame
generator.

First we established the maximum rate possible by the
NIC and driver combination by generating a frame on a sin-
gle buffer and inserting the address into all of the NIC’s
transmit descriptors for 1,000,000 frames. both cards are
able to sustain approximately 1.41 mfps for 64B frames,
suggesting that maybe a PCI-X or local-bus adapter related
constraint for small frame sizes. For frame sizes greater than
or equal to 74B, both cards were able to sustain theoretic
maximum frame rates.

Second we created a test setup that had a stage (G) which
would read a frame from the allocator queue, copy a frame
of the desired size into it, spin for a specified amount of
time, and forward it to an application stage. The applica-
tion stage (A) reads the frame, spins for a specified amount
of time, and then forwards it to the output stage. The out-
put stage (O) reads frames from the input queue, and inserts
them onto the NICs transmit descriptor ring. The output
stage also removes the completed descriptors and forward
the frames back into the allocator queue. With this setup
we are able to generate frames at approximately 1.39 mfps
with 64B frames and theoretic max at 74B frames. Fig-
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ure 7 summarizes the available per-frame work times and
I/O overhead for both the generation stage and the appli-
cation stage, the output stage is not measured as all appli-
cation processing should be complete before data is send to
its output device.

6.3 Frame Capture
For the frame capture evaluation the performance of the

frame capture configuration was not exceeded by the sys-
tem’s generation capabilities even at 1.41 mfps. The plat-
form is similar to the generation only the input stage (I)
is utilized along with two application stages (A, A2). The
results shown in Figure 8 show that the total available per-
frame processing time in the input stage and application
stages may be significantly expanded through the use of
pipeline parallelism and can be extended with additional
processors. Notice that the queue time is constant and equal
for both application stages at all frame sizes, same for the
input stage.

6.4 Frame Forwarding
For the frame forwarding experiments the input, applica-

tion, and output stages used in the capture and generation
experiments are linked together into a three stage pipeline
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(see Figure 6). Figure 9 shows full results, the left bar is
for work in the input stage (I) and the right bar for the ap-
plication stage (O). In this experiment, FShm successfully
forwarded at theoretic max for 74B frames and higher. 64B
frames were successfully forwarded at 1.36 mfps. We suspect
the slight performance drop is due to the frame not being
cache resident while being streamed to the output triggering
extra transfers across the HyperTransport to distant mem-
ory modules (the dual-processor/dual-core AMD Opterons
have a Non Uniform Memory Access architecture). How-
ever, the queue overhead for the application stages remained
negligible for all frame sizes. Further the input handler had
available time for work suggesting it could manually pull the
frames into cache before forwarding.

6.5 Extension to Higher Frame Rates
Figure 10 predicts the available work time at higher frame

rates. Thus, the figure shows the future potential of the
FShm system. Necessarily, these results assume that input
and output NICs can be constructed in such a way as to sup-
port the desired frame rates. From the figure, notice that
FShm is capable of sustaining 10 mfps on the evaluation
hardware, with 5 mfps (OC-48 rates) as the practical cut-off
for real work (≈120 ns work per stage) on our aging hard-



ware platform 2. These rates are also sufficient for realistic
in-order line-rate processing of 230B frames on 10 Gigabit
Ethernet. As processor, memory, and interconnect speeds
improve, FShm will scale to faster rates.

7. CONCLUSION
This paper presented the Frame Shared Memory software

network processor architecture, a software-only framework
for high-rate network processing on commodity multicore
systems. With FShm, general purpose commodity multi-
processors systems should be considered first-class citizens
in advanced networking research and deployment. Evalua-
tion demonstrated that such systems can be used to process
frames at rates sufficient for line-rate processing of gigabit
Ethernet and beyond. This performance is sufficient for
deploying products on many current generation networks
and researching next generation protocols. Furthermore,
with the convergence between general- and special-purpose
systems promising improved memory subsystems, intercon-
nects, and processor counts, general-purpose systems will
continue to improve as networks become faster.

While development on a general-purpose platform may
not completely obviate the need for architectural tuning
of algorithms (as necessary on network processors), devel-
opers now have the option of using general purpose sys-
tems features including operating system services, choice of
operating system, high-level languages, and the ability to
replace application components with software or hardware
components without redesigning the whole platform or ap-
plication. Furthermore, a framework like FShm minimizes
architecture-specific tuning by hiding much of the perfor-
mance tuning for optimal use of the multiple processors and
high-performance interconnects found on current generation
systems. Thus, we conclude that for many applications, us-
ing FShm, despite the slight performance penalty over spe-
cial purpose systems, is a solid option when developing cur-
rent generation line-rate processing systems and researching
next generation systems.
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FastForward implementation has an extra function-pointer-
based abstraction layer on top of the core FastForward al-
gorithm so that one may substitute the algorithm (e.g., to
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